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Abstract

Based on the sample of The National Longitudinal Study of Adolescent to Adult
Health (Add Health), we investigate the formation of health capital and the role
played by genetic endowments, parental SES, and education. To measure genetic
endowments, we take advantage of the new availability of quality polygenic indexes
(PGIs), which are weighted summaries of individual molecular genetic data. Our
main focus is on the Educational Attainment Polygenic Index (EA PGI), which is
designed to predict the highest level of education achieved in life. We find that
the EA PGI demonstrates stronger effects on health and health behaviors for sub-
jects with high parental socioeconomic status (SES). These effects are only partially
explained by education as a mechanism. We provide suggestive evidence for the
mechanisms behind estimated relationships, including early health, skills, and the
parents’ and child’s own attitudes towards education, as well as outcomes related
to occupation and wealth. We also show that a strong association between educa-
tion and health survives controlling not only for detailed traditional controls and
cognitive-noncognitive skills, but also for a large set of PGIs that proxy health, skills,
and environment, all of which are major expected confounders. This result is sug-
gestive of a causal effect of education on health.

Key words: health, health behaviors, polygenic index, polygenic score, environ-
mental bottleneck, Scarr-Rowe hypothesis, educational attainment, parental socioe-
conomic status, child development, education, mediators, pleiotropy, Add Health
data

JEL codes: I12, I14, I24, J24
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1 Introduction

This paper is concerned with understanding the determinants of human capital forma-

tion, with a focus on health capital. We take advantage of modern advances in molecu-

lar genetic measurements and study how genetic endowments are related to health and

health behaviors, how these relationships depend on parental socioeconomic status, and

what the possible mechanisms behind these relationships are. In addition, we inform

the ongoing debate about the relationship between education and health. Education and

health are highly correlated, but education is endogenous, with a significant positive

selection into education expected. However, little is known about the determinants of

this selection and its magnitude. We rely on molecular genetic proxies of endowments

and find novel results.

We measure genetic endowments using Polygenic Indexes (PGIs), which are weighted

sums of a person’s molecular genetic variants.1 Weights put on genetic variants in a PGI

depend on which particular life outcome (phenotype) a PGI is designed to predict. Our

key PGI of interest is the Educational Attaintment PGI (EA PGI), which is designed

to predict the total years of formal education. We also utilize a large number of PGIs

that proxy genetic endowments for various aspects of general and mental health. PGIs

are well-established and useful because they are highly predictive of life outcomes, and

results based on them are typically replicable when tested using different datasets (Ben-

jamin et al., 2012).

We use data from The National Longitudinal Study of Adolescent to Adult Health

(Add Health), which follows a cohort of individuals from middle or high school through

young adulthood. Add Health is considered nationally representative for the USA (Har-

ris, 2013). We study a variety of health outcomes, which are self-reported general health,

1The term “Polygenic Index” (PGI) refers to exactly the same index as the earlier-
established terms “Polygenic Score” (PGS) and “Polygenic Risk Score” (PRS). This new
term is used increasingly often because it is less likely to give the impression of a value
judgment where one is not intended (Becker et al., 2021).



depression, and obesity. We also study health behaviors, which are risky drinking of alco-

hol, marijuana use, smoking cigarettes, and doing no physical exercise. All these vari-

ables correspond to ages 24–32. We refer to them collectively as health-related outcomes in

young adulthood.

We offer three contributions. First, we show that the EA PGI predicts health-related

outcomes even after controlling for education, which the EA PGI is designed to predict.

While this result is not surprising given the polygenic nature of the EA PGI and the

methodology of its construction, the finding is useful for two reasons. (1) It provides

empirical evidence consistent with additional pathways from the EA PGI to health that are

separate from education, a case of a pleiotropy.2 We are not the first to provide evidence

consistent with pleiotropic effects of the EA PGI (e.g., Barcellos et al., 2018; Barth et al.,

2020; Papageorge and Thom, 2020), but we are the first to demonstrate associations be-

tween the EA PGI and a variety of health-related outcomes after controlling for detailed

thresholds of educational investment. (2) Our findings of a sizable pleiotropic effect

motivates a study of the mechanisms linking the EA PGI with health-related outcomes,

which we do in a companion paper (Savelyev and Bolyard, 2025).

Second, motivated by the growing literature on gene-by-environment interactions,

we investigate how parental socioeconomic status (SES) interacts with the endowments

for education measured by the EA PGI. This allows us to better understand the process

through which socio-economic environments can affect health capital formation. We

demonstrate a novel interaction effect: the conditional association between the EA PGI

and health-related variables is strong and positive for subjects with high parental SES

but low or nonexistent for low-SES subjects.3 We thus add new results to the growing

2Pleiotropy typically refers to a situation in which a single gene influences more than
one phenotype (e.g., Solovieff et al., 2013). Since PGIs aggregate multiple genetic vari-
ants, they may demonstrate pleiotropic effects as well, defined as a single PGI affecting
more than one phenotype.

3To avoid cumbersome language such as “direct marginal conditional association,”
the word “effect” in this paper does not necessarily imply “causal effect,” unless explic-
itly stated or implied.
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literature on what Fletcher (2019) calls environmental bottlenecks: an adverse environment

can limit the benefits of productive genetic endowments or the remediation of harmful

ones (e.g., Bierut et al., 2023; Scarr-Salapatek, 1971).

Similar gene-by-SES interactions have been established for the effect of the EA PGI on

education (Fletcher, 2019; Papageorge and Thom, 2020; Ronda et al., 2020). In this paper

we replicate this important result for the AddHealth data. This result suggests another

question: whether the interaction between the EA PGI and SES in affecting health-related

outcomes is fully driven by a similar interaction that has already been shown for edu-

cation. We test and reject this hypothesis. We also perform an exploratory study of po-

tential behavioral mediators other than education that may link the EA PGI with health

capital and health behaviors to better understand our findings and inform further re-

search. We find a large set of such mediators: early skills, early health, parental support

of the child’s education, the child’s self-motivation for education, and the child’s own

job market outcomes in young adulthood (occupation, household income, and house-

hold wealth).

Third, we contribute to understanding the confounders behind the education-health

gradient. While there is a large literature in economics concerned with estimating the ef-

fect of education on health, the conclusions drawn by these papers regarding the causal

status of the relationship are contradictory, with little attention paid to establishing pos-

sible confounders behind the relationship (Galama et al., 2018; Grossman, 2022).

Among the expected major confounding factors in education-health studies are ge-

netic endowments (e.g., Boardman et al., 2015; Conti and Heckman, 2010). From twin

studies, we know that the average heritability across traits is about 50%, with health

measures being among highly heritable ones (Polderman et al., 2015). The heritability

of education estimates typically range from 20% to 70%, with 40% being the average

estimate across studies (Branigan et al., 2013).

Genetic confounders have historically been viewed as unobservables but recently be-
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come measurable due to major advances in genotyping and PGI construction techniques.

Modern quality PGIs are still imperfect measures of genetic endowments. However,

they are highly correlated with the endowments, which makes them good candidates

for proxies. The proxy model not only contributes to efficiency by reducing residual

variance, but also has the potential to perfectly control for the omitted variable bias

(Wooldridge, 2010).

To the best of our knowledge, this is the first time molecular genetic measures are

used as proxies of major expected confounders behind the education-health gradient.

The reduction in the estimates of the effects of education on general health in our proxy

model is substantial: the incremental effect of adding 17 PGI controls to a model that

already controls for traditional background variables and cognitive-noncognitive skills

reduces the estimated association between education and health by about 11%. However,

education still exhibits a large and statistically significant association with general health

and all other health-related outcomes after controlling for genomic proxies of skill en-

dowments, general health endowments, mental health endowments, and environment.

This novel result is suggestive of a causal effect of education on health and is at odds

with a sizeable fraction of papers claiming that there is no causal effect of education on

health, discussed in Section 4.2.

The use of PGIs is characterized by both advantages and limitations. One advantage

of using PGIs is that genetic endowments are determined at conception, and so parental

actions afterwards (during pregnancy, childhood, adolescence, and so on) do not affect

the child’s PGI. This distinguishes PGIs from traditional measures of endowments, such

as IQ tests. This property of the PGI creates an exclusion restriction that is useful for

structural modeling and regression coefficient interpretation (Papageorge and Thom,

2020). However, PGIs are known to be imputed with measurement error (Becker et al.,

2021). They are also known to correlate with environment, as we explain below.

Parental genotypes influence offspring outcomes not only directly through genetic
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transmission, but also via environmental pathways, a phenomenon known as “genetic

nurture” (e.g., Wang et al., 2021). Due to genetic nurture and the peculiarities in the PGI

construction, the EA PGI captures not only the subjects’ own genetic endowments but

also their environment.4

Both inherited and noninherited parental genotypes contribute to the correlation be-

tween the PGI and the environment. The path though noninherited genotypes is well

documented by Kong and Thorleifsson (2018), who show that the non-inherited parental

endowments that are still passed down to children through the environment account for

about 30% of the variation in education endowments explained by the EA PGI. As for

the inherited genotypes, they also contribute to the correlation between PGIs and the en-

vironment, as some parental traits that affect the environment are genetically inherited

by children. Overall, the confounding role of the environment is known to be large for

the EA PGI. Based on a comparison between raw and within-sibship estimates, Howe

et al. (2022) have shown that accounting for the environment reduces the association

between the EA PGI and education by 50%.

The implications of these limitations of the EA PGI differ across our contributions.

For our third contribution on the association between education and health, we need

to proxy for as many potential unobserved confounders as possible. Therefore, it is

an advantage for the proxy model that the PGIs do not only capture subjects’ genetic

endowments but also their environment. For our first and second contributions on

the association between the EA PGI and health as a function of SES, the correlation

between the EA PGI and SES with unobserved family environment in the error term

can be expected to lead to biased estimates. So does measurement error in the EA PGI.

Therefore, we stress that we estimate a number of novel associations, not causal effects.

We support the results of this general and exploratory paper with a more technical

4The EA PGI depends not only on subjects’ molecular genetic data but also on weights
imputed from associations between molecular genetic data and observed education out-
comes (of people from an independent sample).
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confirmatory analysis (Savelyev and Bolyard, 2025).

2 Data

Add Health is a nationally representative panel dataset that follows roughly 20,000 indi-

viduals and contains detailed information on their family background, skills, education,

and life outcomes in young adulthood (Harris, 2013). The respondents were first sur-

veyed in 1995–1996, when they were in grades 7–12, and were followed into young

adulthood. The most recent data that are used in this paper, Wave IV, were collected

when the participants were 24–32 years old.

Our estimation sample size of 3,709 is constrained by the availability of genetic data

and the reliability of the imputed EA PGI. First, we restrict our sample to those who

participated in genotyping. Second, because the EA PGI that we use is constructed

based on data collected from individuals with European ancestry, we restrict our sample

to those who self-report as white. Here we rely on the established result that PGIs

constructed using European-ancestry samples are both biased and less predictive when

applied to populations with different ancestry (Martin et al., 2017).

In Table 1 we show descriptive statistics for the highest level of education, health,

health behaviors, and potential mechanisms behind the effect of the EA PGI on health.

We study health-related outcomes from wave IV of AddHealth. Self-reported health is

the key outcome of interest, because it has been shown to be predictive of mortality,

and it is an essential measure of overall health (Idler and Benyamini, 1997). Obesity

and depression can also be viewed as measures of health. In addition, we study health

behaviors: risky drinking of alcohol, smoking cigarettes, marijuana use, and lack of

physical exercise.

To measure cognitive skills, we use participants’ scores on the Add Health Picture

Vocabulary Test, recent science grades, and recent math grades as dedicated measures
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Table 1: Education, Health-Related Outcomes, and Potential Mechanisms of the EA PGI
Effects on Health

Full Sample Low SES High SES
(N f = 3, 709) (Nl = 1, 404) (Nh = 2, 305)

Standard Standard Standard
Average Deviation Average Deviation Average Deviation

Highest Education Level
Below high school(a) 0.048 0.214 0.080 0.272 0.029 0.167
High school diploma 0.415 0.493 0.516 0.500 0.353 0.478
College below bachelor’s(b) 0.174 0.380 0.180 0.384 0.171 0.377
Bachelor’s or above 0.363 0.481 0.223 0.416 0.448 0.497

Health and Health Behaviors in Young Adulthood
General health rating(c) 3.745 0.889 3.640 0.908 3.810 0.870
Good health(d) 0.625 0.484 0.565 0.496 0.662 0.473
Risky drinking of alcohol(e) 0.209 0.407 0.228 0.420 0.197 0.398
Marijuana use(f) 0.096 0.294 0.093 0.291 0.097 0.296
No exercise(g) 0.130 0.336 0.148 0.355 0.119 0.324
Smoking cigarettes(h) 0.261 0.439 0.300 0.459 0.237 0.425
Obesity(i) 0.343 0.475 0.387 0.487 0.317 0.465
Depression(j) 0.191 0.393 0.187 0.390 0.194 0.396

Potential Mechanisms
Early health(k) 0.705 0.456 0.658 0.475 0.734 0.442
Cognitive skills(l) 0.000 1.000 -0.158 1.003 0.096 0.986
Conscientiousness(l) 0.000 1.000 -0.015 0.999 0.009 1.001
Extraversion(l) 0.000 1.000 -0.059 0.993 0.036 1.003
Emotional stability(l) 0.000 1.000 -0.053 1.013 0.032 0.991
Education support-self(l) 0.000 1.000 -0.258 1.058 0.157 0.929
Education support-parental(l) 0.000 1.000 -0.165 1.035 0.100 0.965
Household income(m) 8.398 2.354 8.004 2.465 8.633 2.252
Household assets(n) 3.834 1.902 3.593 1.861 3.980 1.911
Job satisfaction(o) 2.215 1.054 2.071 1.025 2.302 1.061
Job physicality(o) 2.073 1.071 2.197 1.074 2.000 1.063

Notes: Calculations based on the Add Health data. Estimation sample size reported.
For the purposes of descriptive analysis only, high SES is defined as having the SES
factor score above its average; low SES otherwise. (a)No high school diploma (including
having a GED certificate). (b)Completed post-high school degree that takes at least one
year to complete. (c)Self-evaluated on a scale from 1 (poor) to 5 (excellent). (d)General
health ranked 4 or 5. (e)Typical number of drinks per occasion exceeds four. (f)Smoking
marijuana once or more per week, on average, during the last year. (g)None of the
following: playing sports, exercising outside, walking for exercise, or engaging in other
physical activity during the past week. (h)Smoking at least one cigarette within the past
30 days. (i)BMI ≥ 30. (j)Had ever been told by a health care provider that they had
depression. (k)Self-reported good health. (l)Standardized factor score summarized. See
measures listed in Table A-1. (m)Bands: 1(lowest)–12. (n)Bands: 1(lowest)–9. (o)Self-
rating: 1(least)–4.

7



of a latent cognitive factor. To measure noncognitive skills we follow a paper by psy-

chologists Young and Beaujean (2011) who suggest measures of early Conscientiousness,

Extraversion, and Emotional Stability based on available measures of personality in the

first wave of the Add Health.5

We call the attitudes towards education variables “education support—self,” and

“education support—parental.” Typical questions about parental support ask whether

the father would be disappointed if the child did not graduate from high school. The

same question is asked about graduation from college. The same questions are repeated

about the mother’s attitudes. Self-support is measured by questions about the student’s

own plans to go to college and their expectations about graduating from college. The

full list of questions is available in Table A-1 of the Web Appendix.

From the Table 1 we can see that high-SES subjects tend to have better early health,

superior early skills and education support, higher levels of education, more favorable

job-related outcomes, better health, and healthier lifestyles in young adulthood. For

instance, graduating from college is about twice as likely for high-SES subjects (0.45

for high-SES vs. 0.23 for low-SES). These differences present evidence that our SES

measures described below capture important population differences that are relevant

for socio-economic outcomes.

SES To study the interaction of respondents’ genetic endowments with family SES in

their childhood, we follow the literature on PGI-SES interaction (Bierut et al., 2023; Papa-

george and Thom, 2020; Ronda et al., 2020), and construct measures of SES from relevant

variables that are available in the Add Health data. The literature has proposed a number

of SES measures. In particular, Ronda et al. (2020), who use the Integrative Psychiatric

Research Study data from Denmark, utilize the following four binary measures of low

5See Table A-1 of the Web Appendix for the list of measures for all continuous la-
tent factors. Due to data limitations, we are not able to study early Agreeableness and
Openness.
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SES: both parents lacking any post-secondary education; growing up in a family in the

lowest quintile of disposable family income; either parent ever being diagnosed with a

mental health condition; growing up in a broken family, with non-cohabiting parents,

between the ages 0 and 10. Papageorge and Thom (2020) and Bierut et al. (2023) use

Health and Retirement Study (HRS) data from the USA and also utilize binary measures

of SES: father’s income above the median; family is well-off; family never had to move or

to ask for help; father never experienced any significant unemployment spell (“several

months or more”).

The Add Health data contain measures that either match measures used in the liter-

ature or describe related disadvantages. Like in the above literature, we proxy SES with

binary measures. We use the following five measures of family SES in childhood for our

main model specification: living in an unsafe neighborhood; receiving government as-

sistance (such as welfare); having difficulty paying bills; at least one parent has a college

degree; and parental income from the lowest quintile. These measures are summarized

in Panel A of Figure 1. This particular set of five measures is characterized by the strong

specification statistics of the corresponding factor model, as we discuss in Section 3. We

also show the robustness of our results to using alternative sets of measures for the SES

factor, as well as to alternative methods of their aggregation.

Panel B presents a histogram for the count of disadvantages based on variables listed

in Panel A.6 We can see that experiencing no disadvantages is the mode, which is char-

acterized by a likelihood of about 0.40. Experiencing one disadvantage has a similar

likelihood, 0.39. After that, likelihoods quickly drop to 0.13 for 2 disadvantages and

keep declining: 0.06 for 3, 0.02 for 4, and 0.0023 for 5, which makes the histogram right-

skewed.

Finally, Panel C shows a histogram of an SES factor score that is implied by the

6“Parental college” is our only positive measure of SES, and so the corresponding
“lack of parental college” is used for a count of disadvantages.
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Figure 1: Description of SES

A. Measures of SES

Standard
Average Deviation

Living in an unsafe neighborhood(a) 0.073 0.259
Household received assistance(b) 0.198 0.399
Trouble paying bills(c) 0.121 0.326
Parental college(d) 0.523 0.500
Income from the lowest quintile(e) 0.190 0.393

B. Number of Disadvantages C. SES Factor Score
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Note: Calculations are based on the Add Health data. Estimation sample size is 3,709.
All SES measures are reported by either a parent or the subject (child, student) in wave
I, with the exception of “unsafe neighbourhood,” which was reported in wave 2. All
variables are binary. (a)The subject indicates that they do not usually feel safe in their
neighborhood. (b)Any member of the subject’s family received any form of social assis-
tance last month before the survey, including food stamps, unemployment or workers’
compensation, housing subsidy, or public housing. (c)Based on a question to a parent:
“do you have enough money to pay your bills?” (d)Subject reports that at least one of
their parents graduated from a college or university. (e)Parent’s reported income is below
the 20th percentile in the sample. (A sizable mass of reported income exactly at the 20th
percentile leads to the average of 0.19 rather than 0.20.)
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measurement system of our main factor model.7 Our SES factor score in Panel C is

normalized to be positive, so that higher levels of SES correspond to more advantaged

families. In contrast, the count of disadvantages in Panel B is a negative measure of

SES. Keeping in mind the reversed signs of these two panels as well as the differences

between discrete and continuous random variables, we can see that histograms in Panels

B and C are similar in shape. The high-likelihood area around zero and above in Panel

C roughly corresponds to having at most one disadvantage. The long left tail in Panel C

corresponds to having two or more disadvantages.

PGIs The most basic DNA building blocks that vary among humans are called single-

nucleotide polymorphisms (SNPs, pronounced “snips”). In principle, individual SNPs

can be used as predictors of life outcomes. In practice, predictions based on individual

SNPs lead to low statistical power and issues with replaceability, as life outcomes are

typically affected by a large number of SNPs. A well-established solution to this problem

is using a polygenic index (PGI) instead of a SNP. A PGI is a weighted aggregate of

multiple SNPs. PGIs demonstrate considerably stronger predictive power and more

robust results across populations than a single SNP (Benjamin et al., 2012).

Modern quality PGIs are constructed using large independent samples by regressing

an outcome (phenotype) of interest on millions of SNPs obtained through genotyping,

SNP-by-SNP. The coefficients are then adjusted to correct for known correlations among

SNPs (linkage disequilibrium) to prevent double counting of genetic information. The

adjusted coefficients are then used as weights to impute PGIs as a weighted sum of

SNPs.

This paper is focused on a specific PGI called the EA PGI, which is designed to

capture individuals’ genetic predisposition for the total number of years of formal edu-

cation. PGIs are constructed by various groups of authors who rely on different samples

7Measurement system (4) is introduced and discussed in Section 3.
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and different numbers of aggregated SNPs, among other choices. In this paper we rely

on the recent state-of-the-art the EA PGI constructed by Lee et al. (2018) based on a sam-

ple of over 1.1 million people of European descent and aggregating 10 million of SNPs.

This EA PGI explains about 13% of variation in years of education in the Add Health

data. For technical details behind PGI construction in general, see reviews of genetic lit-

erature written for an economic audience (Beauchamp et al., 2011; Benjamin et al., 2012).

For technical details behind PGIs used in this paper, see Braudt and Harris (2018) and

Okbay et al. (2018).

In addition to modeling the effects of the EA PGI, which is our main variable of

interest, we also take advantage of PGIs that proxy health endowments: nine PGIs that

describe physical health endowments8 and seven mental health PGIs.9 The choice of

these PGIs is determined by their availability in the AddHealth data. We demonstrate

correlations between the EA PGI and PGIs that describe general health and mental health

in the Web Appendix. These correlations range from negligible to modest.10

Background Control Variables In addition to controlling for the EA PGI and SES, we

control for a range of early-life controls from wave I that could influence education and

health. Those include biological sex, age groups, US regions, degree of urbanization

of the family residence, low birth weight, number of siblings, the order of birth among

siblings, having parents who are married, cigarettes smoked at home, and number of

meals with parents per week. We also use 10 principal components of the full matrix of

genetic data, which is a standard way to account for ethnic differences. See Table A-4 in

the Web Appendix for variable definitions and descriptive statistics by SES.

8These include PGIs for coronary artery disease, myocardial infarction, low-density
lipoprotein cholesterol, triglycerides, type II diabetes, BMI, waist-to-hip ratio, height,
and smoking.

9These include PGIs for depression, Neuroticism, attention-deficit disorder, bipolar
disorder, major depressive disorder, schizophrenia, and mental health cross disorder.

10See Tables A-2 and A-3 of the Web Appendix.
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3 Methodology

Model of the EA PGI and Health-Related Outcomes For our study of the effect of

the EA PGI on health-related outcomes and on potential mechanisms behind health

formation, we employ a model that accounts for an interaction between the EA PGI

and parental SES. This approach is grounded in theory. As we know from epigenetic

research, environment shapes gene expression. This means the traditional nature versus

nurture distinction is outdated: gene-environment interaction is important and should

be accounted for (e.g., Heckman, 2007). In addition, economic theory also suggests that

SES may contribute to health differences through interaction effects (e.g., Galama and

van Kippersluis, 2018).

Our simple reduced form outcome model is comparable to models used in recent

economic papers on gene-environment interactions (e.g., Barth et al., 2020; Bierut et al.,

2023; Papageorge and Thom, 2020). The model is specified as follows:

Y∗
k = b1kEAPGI + b2kEAPGI · θSES + b3kEAPGI2 + b4kθSES + b5kX + ηk, (1)

where outcome Y∗
k denotes a latent propensity for an outcome Yk of type k, k = 1, ..., K1.

Equation (1) summarizes several types of models depending on the type of outcome

Yk. For binary outcomes we use a logit model, so that Yk = 1 if Y∗
k > 0 and Yk =

0 otherwise. For ordered categorical outcomes we use an ordered logit model. For

continuous outcomes Y∗
k = Yk, resulting in a model that is linear in parameters. EAPGI

denotes a standardized EA PGI; θSES is a latent continuous factor that represents parental

socioeconomic status at the time of the subject’s childhood. Vector X represents a full

set of background controls11, plus a constant to allow for an unrestricted intercept; ϵk is

an error term.

We follow the analysis by Papageorge and Thom (2020), who argue that SES can be

11See Table A-4 in the Web Appendix.

13



viewed as a proxy for family investments in a child’s human capital. Based on a struc-

tural model, the authors demonstrate that if a reduced form model controls for PGI2,

we can properly interpret the sign of the interaction effect, b2k, as the sign of interaction

between genetic endowment and family investments, while without this quadratic con-

trol the sign of the interaction would be indeterminant. Therefore, all of our outcome

models include a quadratic PGI term, similar to the main model by Papageorge and

Thom (2020).12

For the identification of model (1), which involves a latent SES factor, θSES, we jointly

estimate model (1) with a measurement system (4) that we discuss below.

Estimating the Association between the EA PGI and Health-Related Outcomes Con-

ditional on Education We also estimate a model that is similar to model (1) but is

conditional on education D. This version of the model helps us establish the part of

the association between the EA PGI and an outcome of interest is not explained by ed-

ucation. The causal analogue of this association is the direct effect of the EA PGI on

outcomes, with the indirect effect acting through education.

Y∗
k = c1kD+ c2kD · θSES + c3kEAPGI + c4kEAPGI · θSES

+ c5kEAPGI2 + c6kθSES + c7kX + λk, (2)

where D denotes a vector of three binary variables representing the education levels.13

To make this direct association comparable to the total association estimated in model

(1), model (2) is specified exactly the same way as (1) except for controlling for educa-

12We also tested and rejected a number of other potential nonlinearities. Following
Keller (2014), we tested the joint statistical significance of the following potential regres-
sors: X ∗ PGI and X ∗ SES. We failed to reject the test and found that both AIC and BIC
increase when these regressors are added. Therefore, we keep these interactions out of
our main model specification for the sake of superior parsimony and efficiency.

13These binary variables include: education below high school, high school diploma,
and college degree below bachelor’s. Bachelor’s degree or above serves as a comparison
category.
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tion and its interactions. Similarly to model (1), model (2) is estimated jointly with the

measurement system (4).

Model of Education and Health We also estimate a third reduced form model that is

designed to test whether well-known strong associations between education and health-

related outcomes survive controlling for proxies of major expected confounders, which

are endowments for skills, general health, and mental health proxied by PGIs. Moreover,

due to strong correlation between environment and children’s PGIs, these PGIs also

proxy unobserved environment (Howe et al., 2022; Kong and Thorleifsson, 2018), which

is another major expected confounder of the effect of education on health.

Proxies help eliminate or mitigate the omitted variable bias while also reducing the

residual variance. PGIs make good proxies as they are highly predictive, a feature that

makes the proxi model assumptions more plausible (Wooldridge, 2010). While the proxy

model has been originally established for the linear regression, proxies proved to be ef-

fective for logistic regression as well (e.g., Rosenbaum et al., 2023), which is the preferred

model for binary outcomes in this paper.

The model is the following:

Y∗
k = d1kD+ d2kD · θSES + d3kPGI + d4kPGI · θSES

+ d5kPGI2 + d6kθSES + d7kθ
CN + d8kX + ξk, (3)

where variables Yk, k = 1, ..., K2, represent health-related outcomes in young adulthood.

We follow the same notation as in models (1) and (2), but with a number of additional

features described below.

The main difference between models (2) and (3) is that (2) is designed to to estimate

the direct effect of the EA PGI while keeping comparable specification to model (1).

In contrast, model (3) is designed to estimate the total effect of education, described

by coefficients d1k and d2k, which downgrades the role of the EA PGI from the main

15



variable of interest to one of many proxy variables. To maximize the set of accounted-for

confounders, we include 16 additional PGIs in addition to the EA PGI, resulting in a

vector of 17 PGIs denoted as PGI . We also control for early cognitive and noncognitive

skills through a vector of latent variables, θCN.

To better account for possible nonlinearities and to be consistent with the models

above, we control for a vector of squared PGI indices, PGI2, and interaction terms,

PGI · θSES. However, to keep the model parsimonious, we do not control for the in-

teraction between the 17 PGIs and three levels of education. Coefficients for these 51

potential variables are not jointly statistically significant and other coefficients are robust

to these potential controls. Nor do we control for the interaction of SES and PGI with

X for the same reason.

Further, we compare an unrestricted model (3) with its restricted version, in which

we jointly set to zero the following coefficients: d3k, d4k, d5k and a part of vector d8k that

corresponds to the 10 first principal components of genetic data.14 This comparison helps

us explore how controlling for a large number of genomic controls affects associations

d1k. We also explore how associations d1k change when we omit all traditional controls,

X , all cognitive-noncognitive controls, θCN, or various combinations of these types of

controls.

As with models (1) and (2), model (3) is estimated jointly with the measurement

system (4), which we now specify not only for latent SES, but also for latent cognitive

and noncognitive skills.

Measurement system Following well-established factor model methodology (e.g., An-

derson and Rubin, 1956; Conti and Heckman, 2010), to identify each of the models above

(1, 2, and 3), we need additional information provided by the measurement system (4).

14The first principal components of genetic data control for ethnic origin and serve
as standard controls in regression analysis involving PGIs, because ethnic origin is a
potential confounder of the effect of a PGI. Therefore, it is natural to test restrictions for
PGIs together with restriction for principal components.
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This system of equations relates latent factor θSES to its several observable dedicated

measures Mj conditional on background controls X , where X includes a constant, while

accounting for measurement error ϵj:

M∗
j = a1jθ

SES + a2jX + ϵj, j = 1, ..., J. (4)

Here J is the total number of dedicated measures of θSES, and ϵj are error terms. All

models in this system are logit models, and so variables M∗
j are latent variables, so

that Mj = 1 if M∗
j > 0; Mj = 0 otherwise; a1j and a2j are unknown coefficients to be

estimated.

We make assumptions and normalizations that are standard for a classical factor

model with dedicated measures (e.g., Conti et al., 2014). Error terms are independent

of each other and of covariates. Conditional on observable controls, latent factor θSES

absorbs common variation across outcomes and measures, which helps us justify the as-

sumption of independence of the error terms from each other. Therefore, conditional on

controls, the latent factor is the only source of correlation among its dedicated measures.

We follow the literature on factor model specification testing by calculating several

established specification statistics, which are consistent with correct model specification.

In addition, we show that simple equally-weighted indices and binary aggregations of

SES measures lead to the same conclusions as our main factor model, which implies that

our results are not driven by the peculiar factor model assumptions described above.

Finally, we show the robustness of our results to using alternative sets of SES measures.15

We follow an established approach to normalization that allows us to identify the

model while keeping it easily interpretable: each latent variable is normalized to have

mean zero and variance one, and for each factor we set a sign to the coefficient a1,1

in such a way so that the resulting latent factor is interpreted positively.16 Finally, the

15See Web Appendix D for these specification and robustness checks.
16Our first SES measure is “living in an unsafe neighborhood,” a negative measure
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sufficient condition for model identification is satisfied for our factor model, as we have

at least three dedicated measures Mj per latent factor, J ≥ 3 (e.g., Conti et al., 2014). We

model latent cognitive and noncognitive skills using models with dedicated measures

using the same type of measurement systems as (4).

Advantages of the Factor Model Over Its Alternatives By using a factor model rather

than alternative methods of dimensionality reduction,17 we gain several advantages: we

explicitly control for measurement error, avoid arbitrarily equal weights,18 and control

for possible systematic determinants of peoples’ perceptions that may affect answers.

These advantages come at the cost of increased complexity and making factor model

assumptions. However, we provide empirical evidence consistent with correct factor

model specification and show the robustness of our qualitative results to simple alter-

natives to the factor model. See Web Appendix B for a more detailed discussion of the

factor model advantages.

Imputation of Missing Values in Controls We impute missing values for a subset

of background control variables X using the well-established MCMC multiple imputa-

tion procedure, which is known to preserve the variance-covariance matrix of variables

(Schafer, 1999). This imputation allows us to control for more background variables

without diminishing the estimation sample size. All reported standard errors account

for the imputation error.

of SES, and so reversing the sign of the corresponding factor loading creates a positive
latent SES. As we can see, an indeterminacy of factor sign that requires an arbitrary nor-
malization creates no issues for interpretation: after all, we do need to choose whether
we wish to define the SES as positive (a measure of advantage) or negative (a measure
of disadvantage) and then interpret the results accordingly.

17For instance, relying on an equally-weighted index, a binary variable that aggregates
all measures (e.g., “having at least two disadvantages”), or principal components.

18We test and reject the equality of weights in the Web Appendix B.
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4 Results

Our empirical part is split in two sections, 4.1 and 4.2. In Section 4.1, which is devoted

to our contributions 1 and 2, we first present a number of descriptive graphs to motivate

our regression analysis. Then we study conditional associations between the EA PGI

and health-related outcomes as a function of parental SES. Afterwards, we proceed to

suggestive evidence regarding the mechanisms behind these relationships.

Section 4.2 is devoted to our contribution 3. Here we study the conditional association

between education and health-related outcomes and establish the relative confounding

role of of the traditional, cognitive-noncognitive, and genomic controls.

4.1 PGI, SES, and Health

4.1.1 Descriptive Results

In Figure 2 we provide a descriptive preview of our contribution 1: the relationship

between the EA PGI and health-related outcomes by parental SES. For the purpose of

descriptive analysis only, high SES is defined as SES factor score above its average; low

SES otherwise.

Each panel of Figure 2 shows two related results: (1) The bin scatter plot for the re-

lationship between the EA PGI and a health-related outcome by SES. Each such scatter

plot is a nonparametric estimate of the conditional expectation function; (2) A superim-

posed univariate linear regression line of a health-related outcome regressed on the EA

PGI by SES (using actual data, not bins). Slope coefficients from these regressions are

shown in the graph, with corresponding standard errors in parentheses.

The descriptive analysis in Figure 2 shows the following: (1) For subjects with high

parental SES, a higher EA PGI tends to correspond to better health or a smaller likelihood

of an adverse health behavior. (2) For subjects with low parental SES, the relationship

between the EA PGI and health-related outcomes tends to be weaker or statistically
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insignificant.

4.1.2 Main Model Estimates

We first estimate an association between the EA PGI and health-related outcomes while

allowing for an interaction between the EA PGI and parental SES. Figure 3 visualizes

estimated relationships by showing marginal effects of the EA PGI on health-related

outcomes as a function of standardized parental SES.

The upper panels of Figure 3 show the total effects of the EA PGI as a function of

standardized parental SES based on model (1). For the purpose of pairwise comparisons,

the bottom panels show the corresponding direct effects, which are effects of the EA PGI

conditional on education, as defined by outcome model (2). The direct effect can be

viewed as a part of the total effect that works through all possible mechanisms other

than education.

Panel A of Figure 3 shows a marginal effect of the EA PGI on having good health.

From Panel A we can see that the effect of PGI on health increases with the level of

parental SES. The p-values superimposed in each panel are for the test of the interac-

tion between PGI and SES. For good health, this p-value is 0.051, which is borderline

statistically significant at the 5% level.

Apart from p-values that allow us to test for the interaction effect directly, we observe

results that are consistent with the interaction effect: a small and statistically insignificant

effect of the EA PGI at the low levels of SES, as opposed to a large and statistically

significant effect at the high SES levels. For instance, an increase in the EA PGI by

one standard deviation is associated with about a 3.8 percentage points (PP) higher

likelihood of having excellent or very good health at the average level of SES (SES=0),

as we can see in Panel A. This association is stronger for those with SES=1 (6.5%), and

weaker for SES below the average. For SES around -1 and below the effect of PGI is no

longer statistically significant. Given that the probability of having excellent or very good
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health for this population is 0.625, these estimates imply strong effect sizes: at SES=0 the

effect size is 6.1% (0.038/0.625), while at SES=1 the effect size is 10.4% (0.065/0.625).

These strong effect size estimates should be interpreted with caution throughout this

paper, though: the effect sizes are based on conditional associations, not causal effects.

Panel E shows the direct effect corresponding to the total effect in Panel A. The su-

perimposed p-value suggests that the direct effect’s interaction term loses its statistical

significance for the general health outcome. However, the effect of the EA PGI is statis-

tically significant in Panel E at the average level of SES and above and is not statistically

significant at the low level of SES. Numerically, the direct effects are 3.8% (0.024/0.625),

at SES=0, and 6.6% (0.041/0.625) at SES=1.

All other panels are constructed in a similar way and a number of them show simi-

lar self-explanatory results, with the difference that the effect on adverse health-related

outcomes and the associated slope tend to be negative, not positive. We discuss these

results below.

Discussion Overall, we can see that all of the estimated total interaction effects that

are statistically significant at least at the 10% level have the same sign as effects of the

EA PGI: positive for general health (Panel A), and negative for adverse health-related

outcomes (Panels B, C, D, and I). Therefore, we can conclude that the EA PGI tends to

be more health-beneficial for those with higher SES. This result is consistent with the

bottleneck hypothesis (Fletcher, 2019): low SES is a good proxy for severely constrained

conditions in childhood. Large total effect sizes for all seven health-related outcomes in

Figure 3 imply the economic significance of the results reported in this paper.19

The overall conclusion from the comparison between total and direct effects is that

there are mechanisms above and beyond education that explain the PGI effect and its

19Effects sizes at SES = 0 are based on the associations, all of which are statistically
significant at the 5% level. Numerically, the total effect sizes are: general health, 6.1%;
risky drinking, -3.7%; marijuana use, -10%, lack of physical exercise, -12%, smoking
cigarettes, -23%; obesity, -4.9%; depression, -8.9%.
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interaction with SES for a number of them. Even after controlling for education, we

still find effects of the EA PGI on health-related outcomes, as well as evidence of the

interaction effect with SES.20

Our results complement those found by Bierut et al. (2023), as we find similar inter-

action effects but for a different type of PGI (we use the EA PGI, not the smoking PGI)

and different outcomes (we use a variety of health-related outcomes, not only smoking

cigarettes). This study also complements the results of Papageorge and Thom (2020),

who use an interaction between the EA PGI and childhood SES to study the determi-

nants of education.

Related results are reported by Schmitz and Conley (2017) and Avinun (2019). Schmitz

and Conley (2017) find that reductions in educational attainment as a result of Vietnam-

era conscription are larger for individuals with a lower EA PGI, providing evidence

that a combination of severe environmental conditions and an unfavorable genetic en-

dowment is particularly harmful. Avinun (2019) finds that the EA PGI interacts with a

subject’s own SES in affecting depression. Our paper has a different focus than these

studies, as we study the interaction of the PGI with childhood SES (which is parental

SES in the subject’s childhood) as a measure of a child’s developmental bottleneck rather

than mediation through a person’s own SES later in life.

Related to environmental bottlenecks is the Scarr-Rowe hypothesis: an exposure to

socioeconomic disadvantage leads to a lower association between the IQ of parents and

their children (Scarr-Salapatek, 1971). The Scarr-Rowe effect can be interpreted as gene-

by-environment interaction: low parental SES may prevent children from taking full

advantage of their genetic endowments. Therefore, we can see that EA PGI-based stud-

ies, including ours, are consistent with a related type of environmental bottleneck effect

that has been established earlier based on IQ scores, even though the EA PGI and the IQ

20We also explore the role of controls that are correlated with SES and show that their
role is quite small: the results barely change when we restrict the model to a smaller set
of controls. See Figure A-1 of the Web Appendix.
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are very different in terms of their construction and limitations.

Limitations As discussed in the introduction, the EA PGI correlates with the environ-

ment that we only partially control for, which likely creates an upward bias (by absolute

value) in the estimated effect of the EA PGI at SES = 0 relative to the true causal effect of

genetic endowment. In addition, measurement error in the EA PGI is expected to create

an attenuation bias in the same estimate. While there is a benefit of these two biases

partially canceling each other, the direction of the resulting bias is indeterminant.21

For the interaction term, we argue that if unobserved parental endowments con-

tribute to the error term of the outcome equation in a linear way, no omitted variable

bias is created under a set of assumptions (see Web Appendix C). While we account for

the measurement error in SES in our factor model, measurement error in the EA PGI

leads to measurement error in the SES-EA PGI interaction. Our strong and statistically

significant estimates of the interaction are found despite this expected attenuation bias.

Overall, our estimates should be treated as conditional associations that might be

informative of the qualitative causal relationships.

Low Statistical Power of Sibling Fixed Effects It would be ideal to rely on the sibling

fixed effect to establish the causal effect of the EA PGI because Mendel’s laws imply

that genetic differences between siblings are uncorrelated with the environment (Morris

et al., 2020). Therefore, within-sibship estimates of PGI effects could be interpreted as

causal effects of one’s own genetic endowments. However, we find that the sample size

that we have (200 sibling pairs who are not identical twins) is by far insufficient to follow

this route because of low statistical power.

21See also Biroli et al. (2022) for a detailed analysis of possible biases in models involv-
ing a gene-by-environment interaction.
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4.1.3 The Mechanisms

To better understand the effects of the EA PGI on health and health behaviors in young

adulthood, the effects we have discussed in Section 4.1.2, we provide suggestive evidence

for the mechanisms behind the estimated effects.

We explore potential mechanisms from two time periods: early life and young adult-

hood. The early life potential mechanisms have the advantage of being observed long

before health-related outcomes in young adulthood, which makes the likelihood of cap-

turing the reverse causal effect small. The young adulthood measurements supplement

the early life ones by adding previously unavailable information. However, because they

are measured simultaneously with health-related outcomes that we attempt to explain,

these suggested mechanisms should be interpreted with extra caution. Overall, our aim

in this exploratory study is to identify multiple potential mechanisms, with testing for

their possible causal status left for future research.

Health Behaviors The partition between health-related outcomes and the mechanisms

of health formation is somewhat blurred. For instance, risky drinking of alcohol, a health

behavior, could be viewed both as a health-related outcome in young adulthood and as

a mechanism behind the formation of general health in young adulthood.

This observation implies that we already have several results on potential mecha-

nisms behind the positive effect of the EA PGI on general health, all documented in

Figure 3, which we have discussed above. Specifically, the results for the positive effect

of the EA PGI on general health (in Panel A the effect is above zero at the average level

of SES (SES=0)) can be explained by the negative effects of the EA PGI on risky drink-

ing, marijuana use, lack of physical exercise, smoking cigarettes, and depression (see

negative effects at SES=0 in Panels B, C, D, I, and K).

The results in Figure 3 also offer suggestive pathways for the positive interaction be-

tween SES and the EA PGI in general health formation that we can see in Panel A (see
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the positively-sloped line, p = 0.051). One possible reason for this positive interaction

could be the negative interactions between SES and the EA PGI for risky drinking of al-

cohol, marijuana use, lack of exercise, and smoking cigarettes (see the negatively-sloped

lines in Panels B, C, D, and I).

However, the possible effects of health behaviors on health stock suggested above

might be small or negligible given that we study health stock in early adulthood, ages

24–32.

Early Life Mechanisms Figure 4 presents estimates of model (1), with early life po-

tential mechanisms serving as outcomes, Yk. We can see that at the average SES level

(SES = 0), the EA PGI is positively associated with cognitive skills (Panel A), early

general health (Panels E and F), the child’s positive attitude towards their own educa-

tion (Panel G), and parental support of the child’s education (Panel H). These suggested

mechanisms are possible explanations behind the positive effect of the EA PGI on health

in young adulthood.

It should be noted that our estimates might be biased due to genetic nurture, as

discussed above. This especially applies to parental support of education. We offer

two interpretations of the observed association, one genetic causal and another spuri-

ous. The causal explanation of the positive relationship between the EA PGI and the

parental support of the child’s education is that parents observe early outcomes of the

child’s genetic endowment for education, such as good performance at school, which

makes them more supportive of the child’s further education. The spurious interpreta-

tion is that the EA PGI captures non-inherited parental traits that correlate with parental

propensity to support their child’s education. These two explanations are not mutually

exclusive, which means that the estimated associations may capture both causal and

spurious components.

Apart from explaining the mechanisms behind the effect of the EA PGI on health-
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related outcomes at the average SES level, we seek to explain the mechanisms behind

the interaction between the EA PGI and SES to better understand the origins of the

interaction effect. However, among early mechanisms that we study, only the results for

cognitive skills (see Panel A) show a positive and statistically significant interaction that

could explain the main results.

In Panel G of Figure 4, we can see that while the EA PGI is associated with self-

motivation for own education at the average level of SES, this association is not increas-

ing with SES but declining. This interaction sign is the opposite of the one that would

explain the positive interaction for general health. We provide the following potential

interpretation of this result: high-SES children expect to get a high level of education

regardless of whether their genetic endowment is low or high because of social expecta-

tions in their SES-group and available parental resources. For low-SES students, social

expectations for education and available resources are smaller, so genetic endowments

for education, which allow them to reduce education costs and overcome obstacles, play

a larger part in their educational motivation.

Early Addictive Behaviors Given that some health behaviors, such as smoking, are

addictive, we also explore the role of early health behaviors as possible mechanisms

of later health behaviors. We first regress early health behaviors from wave I on the

EA PGI, SES, and EA PGI×SES conditional on other controls and find that most early

measures of drinking alcohol, smoking cigarettes, and being overweight in adolescence

are predicted by the EA PGI. However, the interaction with SES is not precisely deter-

mined.22 Secondly, we regress health behaviors in adulthood on EA PGI, SES, and EA

PGI×SES conditional on corresponding early behaviors and other controls, and compare

these results with our main model, which does not condition on early behaviors.23

We find that early behaviors are predictive of later behaviors, and that associations

22See Table A-9 of the Web Appendix.
23See Table A-10 of the Web Appendix.
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between the EA PGI and health-related outcomes in young adulthood tend to slightly

decline when controls for early health behaviors are added. These results imply that

early behaviors represent one channel that partly explains the association between the

EA PGI on later behaviors. However, there is a substantial part of the association that

appears to work through other channels. Also, early health behaviors do not explain the

interaction with SES that we observe for health behaviors in young adulthood, which

implies that the interaction works through channels other than early addictive behaviors.

Education Panels A–D of Figure 5 show marginal effects of the EA PGI on the proba-

bilities of achieving different highest education levels as functions of standardized SES.

These four graphs are based on the same underlying ordered logit model of education

(1), estimated simultaneously with the measurement system (4).

As we can see from the figure, the EA PGI makes lower levels of education—education

below high school and high school diploma—less likely (see Panels A and B), and higher

levels of education—college below bachelor’s and bachelor’s or above—more likely. For

all four outcomes, the interaction with SES makes the education-enhancing effects of

the EA PGI stronger. All results are precisely determined and effect sizes are large.

At the average SES, effect sizes of the EA PGI are the following: 20% decline for ed-

ucation below high school (= −0.0095/0.048), 21% decline for high school diploma

(= −0.087/0.415), 6% increase for college below bachelor’s (= 0.0106/0.174), and 24%

increase for bachelor’s or above (= 0.086/0.363).24

These results for education are expected because the EA PGI is specifically designed

to predict years of formal education and because positive interaction with SES is docu-

mented in the literature (Fletcher, 2019; Papageorge and Thom, 2020; Ronda et al., 2020).

Therefore, results in Panels A–D of Figure 5 serve two purposes: (1) to verify the existing

results on the EA PGI-SES interaction using a different dataset; (2) to test whether these

24See Table A-11 of the Web Appendix for effect sizes and estimates behind Figure 4.
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expected relationships can help us explain the mechanisms behind the effects of the EA

PGI on health for a specific population that we study.

Occupation and Wealth Finally, in Panels E–H of Figure 5 we explore the role of out-

comes related to occupation and wealth as potential mechanisms of the health effects.

We can see that, for medium and high SES levels, the EA PGI is positively related to

household income, household assets, and job satisfaction. Job physicality is affected

negatively. However, none of these effects take place at the low SES levels.

These findings are consistent with our results in Figure 3, as they suggest the mech-

anisms that drive the relationship between the EA PGI and health-related outcomes and

its interaction with SES. Viewing income (a flow) and assets (a related stock) as potential

mechanisms is consistent with Case and Deaton (2005), who argue that there is a direct

protective effect of income on health, and with a number of other authors who make

similar claims.25

Job satisfaction, which is related to overall life satisfaction and the individual’s per-

ception of the value of their own life, is another potential mechanism of health formation

(Savelyev, 2022). Finally, job physicality is known to be related to worse health levels

and faster heath declines despite positive health selection that is typical for physical jobs

(Case and Deaton, 2005; DeLeire and Levy, 2004; Fletcher et al., 2011; Ravesteijn et al.,

2018).

25There is no consensus in the literature regarding the causal status of the relationship
between wealth and health. A number of papers claim a positive effect of wealth on
health-related outcomes (Frijters et al., 2005; Gardner and Oswald, 2007; Lindahl, 2005;
Schwandt, 2018), a number of others find negative effects (Kippersluis and Galama, 2014;
Snyder and Evans, 2006), and there are several papers that find either no effects or minor
effects (Apouey and Clark, 2015; Cesarini et al., 2016; Kim and Ruhm, 2012).
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4.2 Education and Health

The well-known strong association between education and health can possibly be ex-

plained by uncontrolled confounders, or “third variables,” that may include physical

and mental health earlier in life (e.g., Grossman, 2000). Relatedly, several authors em-

phasize the importance of genetic confounders of this relationship (e.g., Boardman et al.,

2015; Conti and Heckman, 2010).

In this section, we explore the confounding role of genetic endowments for skills,

general health, and mental health. Those are proxied by 17 different types of PGIs.

As discussed above, PGIs do not only proxy own genetic endowments but also the

environment, which allows us to proxy the confounding variation even better.

Associations Conditional on Multiple PGIs Table 2, Panel A, shows the marginal

effects of educational categories on health-related outcomes that are estimated based on

model (3). The presented effects are relative to the effect of “bachelor’s degree or above,”

which is the omitted category. The novelty of these results is that they are conditional on

proxies of genetic confounders that historically have been viewed as unobservables, but

recently their measurement has became available due to major advances in genotyping

and PGI construction techniques. These confounders include the EA PGI, nine types of

PGIs related to aspects of physical health, and seven types of mental health PGIs.26

All signs of estimated associations are consistent with the health-beneficial role of

education. Among 21 individual t-tests in Panel A, only one cannot be rejected at the

5% level.27 The results based on individual tests are supported by joint tests, all of

which are rejected at the 5% level of significance. Those include Wald tests of two types:

(1) Joint tests across all seven health-related outcomes, which are performed for each

26See Section 2 for more details about these PGIs.
27The test that we fail to reject is for the lowest education level category, “below high

school”, which is characterized by a small population (about 5% of the sample) and,
therefore, the reduced precision of estimation (see Row 1 of Panel A for outcome (5)).
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of the three education levels (see column (8)); (2) Joint tests across all three education

levels, which are performed for each of the seven health-related outcomes (see Wald tests

statistics in the bottom of Panel A).

Another result of Table 2 is a joint test for the interaction between educational cate-

gories and parental SES, presented in Panel B. This interaction appears at best weak.28

Therefore, while the effect of the EA PGI on education strongly depends on SES, as we

have seen in the previous section, there is no robust evidence for an interaction with SES

in the effect of education on health. Therefore, the effect of education on health cannot

explain the strong EA PGI-SES interaction that we observe for health-related outcomes

in Figure 3.

We offer two explanations for our failure to establish an SES interaction with edu-

cation. First, this result is consistent with the prime importance of early development.

Early development plays a key role in human development over the life cycle for rea-

sons such as critical and sensitive periods in childhood, dynamic complementarity, and

self-productivity (Heckman, 2007). As we have shown earlier, the EA PGI, which is a

strong proxy of early life skills, strongly interacts with family SES in predicting educa-

tion, health, and health behaviors. In contrast, an interaction between postcompulsory

education and family SES conditional on the EA PGI is an example of a skill-SES inter-

action in young adulthood. Second, in young adulthood, parental SES is a feature from

the past that becomes increasingly less relevant with age, as the subject’s own SES may

gradually deviate from parental one. Any of these reasons or a combination of them

might be behind the lack of education-SES interaction.

Relative Confounding Roles of Various Types of Controls We also contribute to un-

derstanding the relative confounding role of various sets of controls, with a special em-

phasis on the role of PGIs. We explore the following groups of controls to be defined

28Because of weak joint test results, we show neither individual coefficients nor the
t-tests in Panel B to save space.
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below: traditional controls, skills, and genomic controls.

By “traditional controls” we denote observable controls that have been used in eco-

nomic literature for decades, such as biological sex, geographic location, and family

background (see background controls that are documented in Table A-4, excluding ge-

netic ancestry PCs). Plus, we include the SES factor in a set of traditional controls, as

SES factor is identified from traditional observed measures of parental disadvantage.

A set of controls denoted as “skills” includes early cognitive and noncognitive skills.

These controls are emphasized by a new field called the economics of human develop-

ment, in which latent cognitive and noncognitive skills are typically modelled jointly

using factor analysis to recognize the importance of multidimensional human capabili-

ties and to account for measurement error (e.g., Heckman et al., 2013, 2006).29

Our final type of controls, labeled as “genomic,” have been recently introduced to

economic research by genoeconomists (Benjamin et al., 2012). In our paper, this group

includes 17 PGIs that proxy genetic endowments for education and health and the first

10 principal components of genetic data, which are standard genomic controls for ethnic

differences.30 Those controls are based on genotyping combined with new techniques of

processing genomic measurements.

Column 1 in Table 3 shows the results of the unrestricted model (3), while columns

2–7 display the results of various restricted models, with restrictions defined in Panel C.

Panel A shows the marginal effects of education categories on self-reported good health

by type of controls. Panel B summarizes the differences in panel A coefficients relative

to various baseline models.

The most basic model, a regression of outcomes on education dummies only, is shown

29Arguably, cognitive skills can be also classified as “traditional controls,” because IQ
has been used by economists as a proxy for ability for a long time. While recognizing this
classification challenge, we group cognitive and noncognitive skills together primarily
to learn the overall confounding contribution of multidimensional early skills that can
be measured using traditional data collection methods, not genotyping.

30PCs are standard controls that accompany PGIs, as ethnic differences are expected
confounders of genetic effects.
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Table 3: Marginal Effects of Education on Self-Reported Health: Comparing Models that
Use Different Sets of Controls, Logit Model Estimates

(1) (2) (3) (4) (5) (6) (7)

A. Education
Below High -0.260 *** -0.257 *** -0.302 *** -0.297 *** -0.295 *** -0.342 *** -0.368 ***

School (0.055) -0.154 (0.051) (0.035) (0.041) (0.036) (0.027)

High School -0.132 *** -0.154 *** -0.161 *** -0.188 *** -0.189 *** -0.224 *** -0.245 ***
Diploma (0.024) (0.017) (0.023) (0.016) (0.020) (0.020) (0.014)

College below -0.095 *** -0.119 *** -0.116 *** -0.146 *** -0.144 *** -0.160 *** -0.190 ***
Bachelor’s (0.028) (0.020) (0.027) (0.019) (0.025) (0.024) (0.018)

B. Average change in education coefficients presented above relative to. . .
Column 7 42% 35% 30% 22% 22% 10% 0%
Column 4 26% 17% 11% 0% - - -
Column 2 11% 0% - - - - -

C. Controls
Traditional(a) ✓ ✓ ✓ ✓
Skills(b) ✓ ✓ ✓
Genomic(c) ✓ ✓ ✓

Notes: The binary outcome is “Excellent or Very Good Health.” Column 1 corresponds
to the unrestricted model (3). All other columns are restricted versions of the same
model, with certain sets of controls omitted, as shown by checkmarks in the bottom of
the table. Column 7 corresponds to a regression of the outcome on education dummies
only. (a)Background controls that are documented in Table A-4 including SES factor, but
excluding genetic ancestry PCs. (b)Cognitive and noncognitive skills; (c)Data based on
genotyping: 17 PGIs and 10 genetic ancestry PCs.
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in column 7. This basic model makes a useful benchmark for comparisons. As we can

see in Panel B, controls decrease the absolute value of regression coefficients (on average)

relative to the no-controls model in column 7, the following way: genomic controls only,

10% (see column 6); skill controls only, 22% (see column 5); traditional controls only, 22%

(see column 4). Using all these controls together gives us a 42% change (see column 1),

which is smaller than the sum of the above percentages (42 < 54 = 10+ 22+ 22) because

different types of controls listed in Panel C are correlated.

The next interesting point of comparison is a model with traditional controls shown

in column (4). Conditional on traditional controls, we study the contribution of con-

trols introduced by new literatures that brought multidimentional childhood skills and

genotyping techniques into the picture. As seen in Panel B, relative to a model that

has traditional controls only, other sets of controls decrease the regression coefficients

of education as follows: skill controls, 17%; genomic controls, 11%, and 26% if both are

used. Again, for the same reason as above, using both types of controls creates a smaller

change than the sum of changes from each type (26 < 28 = 17 + 11). Finally, relative to

a model that controls for both traditional controls and skills (column 2), controls based

on genotyping change the estimates by 11%.

To summarize, after controlling for traditional background variables and skills, the

incremental change in associations due to missing genomic proxies for health endow-

ments, skill endowments, and environment is 11%. While this bias is sizable, it is at odds

with the hypothesis that the strong association between education and health is entirely

driven by unobserved confounders, of which skill endowments, health endowments,

and environment are the most expected ones.

Discussion Our result contributes to the literature on the effect of education on health

and the confounders behind this relationship. In this literature, apart from regressions

conditional on observable controls and propensity score methods, there are four major
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approaches that attempt to identify the effect of education on health-related outcomes:

(1) randomized controlled trials (RCTs) (2) natural experiments; (3) family/twin fixed

effects; (4) the explicit modeling of unobserved heterogeneity.

These approaches have their advantages and disadvantages. Approach 1 has the most

persuasive source of exogenous variation, but it is limited to early childhood education

due to ethical considerations (Conti et al., 2016). Approach 2 mostly relies on changes in

compulsory schooling laws as a source of exogenous variation, though rare exceptions

exist, like the use of military draft avoidance (Buckles et al., 2016). The results of these

papers differ greatly. For instance, some find a causal effect of education on health-

related outcomes (e.g., Barcellos et al., 2018; Lleras-Muney, 2005; van Kippersluis et al.,

2011), while others find none (e.g., Albouy and Lequien, 2009; Clark and Royer, 2013;

Mazumder, 2008; Meghir et al., 2018). Likely reasons for these differences include the

weakness of compulsory schooling laws as an instrument for a number of countries

including the US, confounding influences of other reforms and trends, and differences

in effects by population, cohort, and sex (Galama et al., 2018).

Approach 3 relies on differencing out a large number of unobserved confounders that

are shared by twins or siblings. However, estimates based on these methods are highly

sensitive to measurement error in education (e.g., Ashenfelter and Krueger, 1994) and

could be confounded by unobserved health shocks among siblings or twins in their early

life. Finally, establishing the external validity of twin-based results could be challenging.

Just as for approach 2, the results based on approach 3 are contradictory. Some papers

find substantial effects (e.g., Lundborg et al., 2016; Savelyev et al., 2022; van den Berg

et al., 2015), while others find little to no effect (e.g., Amin et al., 2015; Behrman et al.,

2011; Madsen et al., 2010). Differences in the results could be partly related to different

model specifications and partly due to differences by population, cohort, and sex.

Approach 4 explicitly models the relationships between observed and unobserved

confounders, education, and health-related outcomes. These methods preserve statistical
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power better than approaches 2 and 3. Also, unlike approach 2, approach 4 attempts to

estimate the Average Treatment Effect (ATE) rather than the Local Average Treatment

Effect (LATE). The results of approach 4 are more consistent than 2 and 3, as authors

tend to find positive effects of education on health (e.g., Bijwaard et al., 2015; Conti and

Heckman, 2010; Hong et al., 2020; Savelyev, 2022; Savelyev and Tan, 2019). The biggest

concern with approach 4 that relies on the conditional independence assumption and

its generalizations is its ability to adequately account for possible remaining unobserved

confounders. This paper diminishes concerns about the results based on approach (4)

by controlling for a large number of PGIs, which we use to proxy genetic endowments

for skills, physical health, mental health, and environment, and establishing that the

association between education and health survives controlling for such proxies.

We also contribute to discussions of the confounders behind the education-health

gradient. Our results are in line with a related paper by Heckman et al. (2018) (HHV),

which focuses on dynamic aspects of schooling choice. We complement their discussion

of confounding factors of the effect of education on health. We are in agreement with

HHV that education affects health and smoking even after accounting for confounders

in various ways. In particular, we confirm that multidimensional skills are major con-

founders and that accounting for them preserves a strong and statistically significant

association between education and health.

Another closely related paper is by Cutler and Lleras-Muney (2010) (CLM), who sum-

marize the decrease in the association between education and health behaviors when var-

ious factors are controlled for, including those that are simultaneously determined with

health behaviors, such as current income. They conclude that income, health insurance,

and family background can account for about 30% of the education-health gradient,

whereas health knowledge and cognition explain an additional 30%. However, they do

not find that personality measures contribute to closing this gap. Conti and Hansman

(2013) (CH) use different data and alternative measures of child personality, and argue
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that the contribution of personality is nearly as large as that of cognition.

Our contribution relative to HHV, CLM, and CH is showing the selection bias correc-

tion due to molecular genetic proxies of health, ability, and environment.

5 Conclusions

We find that the EA PGI exhibits strong and health-beneficial conditional associations

with a variety of life outcomes in young adulthood and that these associations are not

fully driven by education as a mechanism. Moreover, these associations strongly interact

with SES: individuals who grew up in disadvantaged households do not experience the

health benefits of the EA PGI the way their more advantaged peers do. We also con-

tribute to our understanding of the potential mechanisms through which the EA PGI

may affect health. These mechanisms include early health, cognitive skills, positive at-

titude toward education by parents and self, education, occupations, wealth, and health

behaviors. Finally, we provide evidence that is consistent with a causal relationship

between education and health-related outcomes.

Major disadvantages that we capture using our SES measure can be dealt with through

politically feasible anti-poverty policies. The second contribution of this paper provides

novel evidence regarding an additional major benefit of such policies. We show that

poverty reduction can complement the productive influence of own genetic endowments

on health and health behaviors in young adulthood. As part of our study of the mecha-

nisms, we also show a number of other positive complementing effects of SES on skills,

education, earnings, wealth, and job satisfaction. Our third contribution supports edu-

cation as a health policy variable in cases when education happens to be at sub-optimal

levels due to market failure.
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Conti, G., S. Frühwirth-Schnatter, J. J. Heckman, and R. Piatek (2014). Bayesian ex-
ploratory factor analysis. Journal of Econometrics 183(1), 31–57.

Conti, G. and C. Hansman (2013). Personality and the education-health gradient: A note
on “understanding differences in health behaviors by education”. Journal of Health
Economics 32, 480–485.

44



Conti, G. and J. J. Heckman (2010). Understanding the early origins of the education-
health gradient: A framework that can also be applied to analyze gene-environment
interactions. Perspectives on Psychological Science 5(5), 585–605.

Conti, G., J. J. Heckman, and R. Pinto (2016). The effects of two influential early child-
hood interventions on health and healthy behaviour. Economic Journal 126, 28–65.

Cutler, D. M. and A. Lleras-Muney (2010, January). Understanding differences in health
behaviors by education. Journal of Health Economics 29(1), 1–28.

DeLeire, T. and H. Levy (2004). Worker sorting and the risk of death on the job. Journal
of Labor Economics 22(4), 925–953.

Fletcher, J. M. (2019). Environmental bottlenecks in children’s genetic potential for adult
socio-economic attainments: Evidence from a health shock. Population Studies 73(1),
139–148.

Fletcher, J. M., J. L. Sindelar, and S. Yamaguchi (2011). Cumulative effects of job charac-
teristics on health. Health Economics 20(5), 553–570.

Frijters, P., J. P. Haisken-DeNewb, and M. A. Shields (2005). The causal effect of income
on health: Evidence from German reunification. Journal of Health Economics 24, 997–
1017.

Galama, T. J., A. Lleras-Muney, and H. van Kippersluis (2018, September). The ef-
fect of education on health and mortality: A review of experimental and quasi-
experimental evidence. The Oxford Research Encyclopedia, Economics and Finance (ox-
fordre.com/economics), 1–96.

Galama, T. J. and H. van Kippersluis (2018, January). A theory of socio-economic dis-
parities in health over the life cycle. The Economic Journal 129, 338–374.

Gardner, J. and A. J. Oswald (2007). Money and mental wellbeing: A longitudinal study
of medium-sized lottery wins. Journal of Health Economics 26, 49–60.

Grossman, M. (2000). The human capital model. In A. J. Culyer and J. P. Newhouse
(Eds.), Handbook of Health Economics, Volume 1, Chapter 7, pp. 347–408. Amsterdam:
Elsevier Science B. V.

Grossman, M. (2022). The demand for health turns 50: Reflections. Health Economics,
1–16.

Harris, K. M. (2013). The Add Health study: Design and accomplishments. Chapel Hill:
Carolina Population Center, University of North Carolina at Chapel Hill.

Heckman, J. J. (2007, August). The economics, technology and neuroscience of human
capability formation. Proceedings of the National Academy of Sciences 104(3), 13250–13255.

45



Heckman, J. J., J. E. Humphries, and G. Veramendi (2018). Returns to education: The
causal effects of education on earnings, health and smoking. Journal of Political Econ-
omy 126(S1), S197–S246.

Heckman, J. J., R. Pinto, and P. A. Savelyev (2013). Understanding the mechanisms
through which an influential early childhood program boosted adult outcomes. Amer-
ican Economic Review 103(6), 2052–2086.
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