Human Capital and Economic Opportunity: A Global Working Group

Working Paper Series

Working Paper No. 2011-013

Gender Differences in Exec utive Compensation and J ob Mobility

George-Levi Gayle
Limor Golan
Robert Miller

October, 2011

Human Capital and Economic Opportunity Working Group
Economic Research Center
University of Chicago
1126 E. 59th Street
Chicago IL 60637

Gender Differences in Executive Compensation and Job Mobility

George-Levi Gayle, Limor Golan, Robert A. Miller*
Tepper School of Business, Carnegie Mellon University

March 2011

Abstract

Fewer women than men become executive managers. They earn less over their careers, hold more junior positions, and exit the occupation at a faster rate. We compiled a large panel data set on executives and formed a career hierarchy to analyze mobility and compensation rates. We find that, controlling for executive rank and background, women earn higher compensation than men, experience more income uncertainty, and are promoted more quickly. Amongst survivors, being female increases the chance of becoming CEO. Hence, the unconditional gender pay gap and job-rank differences are primarily attributable to female executives exiting at higher rates than men in an occupation where survival is rewarded with promotion and higher compensation.

I. Introduction

This paper studies gender differences in mobility and compensation among top executives based on a large matched panel data set on executives and their firms. First we explore the difference in mobility rates and compensation between male and female executives by education and employment history. Then we develop a dynamic decomposition framework to quantify the effects of gender differences in characteristics upon entering the market for top executives (age, education, rank, and complete labor market history), exit rates from the top-executive occupation, and job transitions throughout their executive careers (both internal rank transitions and transitions that involve firm turnover) on the gender gap in compensation, expected career length, and the probability of becoming a CEO.

While there is a large literature on gender gaps in the labor market, few studies focus on the gender gap for top executives in publicly traded firms. Four exceptions are Bertrand and Hallock
(2001), Bell (2005), Albanesi and Olevetti (2008), and Selody (2010). While we used the same primary data source for compensation as the above mentioned papers, our paper differs in three major aspects. First, we match the compensation data with detailed executive-background characteristics, allowing us to account for gender differences in educational attainment and actual labor market experience. ${ }^{1}$ Second, we construct a detailed career hierarchy of rank and use it to analyze gender differences in mobility patterns. Third, following the literature on executive compensation (see Antle and Smith, 1985, 1986; Hall and Liebman, 1998; Margiotta and Miller, 2000; Gayle and Miller, 2009a, among others), we used a comprehensive measure of total compensation that includes direct compensation plus the changes in wealth from holding firm options and restricted stocks, instead of accounting only for direct compensation.

In order to study gender differences in mobility (i.e., promotions, demotions and lateral moves), we need to construct a hierarchy of ranks. Our approach builds on the case study of internal promotions within a single firm by Baker, Gibbs, and Holmstrom (1994b), which follows the firm's white-collar workers over a broader span of their life cycle. Our framework, however, covers job transitions within and between firms. In the spirit of Baker et al. (1994b), we adopt two axioms for defining a job hierarchy: that promotions should reflect life-cycle job transitions and that employee compensation, and payoff-relevant variables that change over time within a job spell, should not determine rank. We add a third axiom that every hierarchy should satisfy, called transitivity: No sequence of consecutive promotions should constitute a demotion. ${ }^{2}$ Defined this way, a hierarchy is an example of a rational ordering. Our data on promotion and turnover are drawn from roughly 2,500 publicly listed firms, 30,000 executives and 60 job descriptions over a 16 -year period. From this large longitudinal data set compiled from observations on executives and their firms, we define and construct a career hierarchy, ranking jobs in the executive market and reporting on their transition matrices.

Only 5% of executive management is female. This fact suggests that female executives may be drawn from a more select population than male executives are. Consequently, their characteristics may differ from those of male executives. Assuming compensation and promotion rates do not vary with gender, female executives being more qualified than male executives could suggest that gender discrimination exists in this market. To address these selection issues, we augmented about half the data on executive promotion, turnover, and compensation with the subjects' professional
and demographic background information compiled from the Marquis Who's Who, which contains details about listees' age, gender, education, work experience, executive experience, and firms that employ them. Our empirical analysis shows that male and female executives have different background characteristics and experience. We find that women are paid more and that their pay is tied more closely to the firm's performance (i.e., they have higher pay-for-performance than men), conditional on rank, background, and experience. We also find that women are promoted faster internally, but display similar rates of external promotion and demotion. Female executives, however, have higher exit rates than men. Both at age 39 and age 49, the probability of a female executive becoming CEO is less than half that of male executives.

The decomposition shows that male executives' survival rate is twice that of female executives. We find that the differences in initial rank and in transitions to ranks have almost no effect on the differences in career length, suggesting that these differences are not because women begin in or transition into "dead-end" positions. Instead, most of the gender differences in career length are accounted for by the difference in exit rates. The gender differential of becoming a CEO is explained jointly by the differences in initial rank and exit rates. In fact, conditional on survival as an executive at any age, women have a higher probability of becoming a CEO than men. We find that the average career compensation as well as overall career compensation are lower for women than men at all ages. As suggested by the regression analysis, the differences are not driven by unequal pay. The exit rate as well as initial assignments are the largest factors driving the differences in average and total career compensation. Overall, our findings suggest that the differential occupational exit rates between the genders create a spurious gap in average lifetime compensation as average compensation rises with rank. While explaining the source of the gender differences in exit rates is beyond the scope of this paper, our findings can be explained by women acquiring more nonmarket human capital throughout their lives. Other existing theories of gender discrimination can explain the higher exit rates and can be consistent with some of the evidence but have difficulty reconciling other patterns found in the data.

The results on the gender difference within executive management are mixed. Bell (2005), Albanesi and Olivetti (2008), and Selody (2010) find that women are paid less than men at equivalent ranks, contradicting earlier work on this subject by Bertrand and Hallock (2001). With respect to compensation level, our results confirm those of Bertrand and Hallock (2001), while our finding
on volatility contradicts findings in Albanesi and Olivetti (2008) and Selody (2010). We find that women have the same pay sensitivity to bad outcomes, but they have higher sensitivity to good firm performance than men have. This contradiction is mainly due to the highly nonlinear nature of the dependence of pay on firm performance and the fact that, as documented in Hall and Liebman (1998) and Gayle and Miller (2009a), most of the variability of compensation comes from changes in wealth from holding firm options and restricted stocks.

Albrecht, Björklund, and Vroman (2003) recently concluded there is a glass ceiling in Sweden because women are underrepresented in the upper quantiles of the wage distribution. Similarly, Blau and Kahn (2004) concluded from their study of wage data for the United States that the gender gap stopped shrinking 15 years ago and has not closed. Black, Haviland, Sanders, and Taylor (2008) report that, although highly educated women earn approximately 30% less than men, more than half, but typically less than all of the difference, is accounted for by background variables such as age, education, and work experience. Their results are corroborated in a study of successive cohorts of MBA graduates from the University of Chicago by Bertrand, Goldin, and Katz (2010), who report that gender differences in the wages of young professionals can be largely attributed to differences in college education, career interruptions, and weekly hours worked.

The gender differences in the executive labor market cannot be definitively understood with wage data alone. Men and women are also distinguished by their promotion rates (or more generally job transitions), as well as occupational exit rates. Ginther and Hayes (1999, 2003); McDowell, Singell, and Zilliak (1999); and Ginther and Kahn (2004) compared the trajectories of male and female academic faculty in the social sciences and humanities, finding that women tend be paid less at any given rank and are also less likely to be promoted. Pekkarinen and Vartianinen's (2004) empirical study of metal workers in Finland found that women are internally promoted more slowly than men. By way of contrast, we find that within executive management women are more likely than men to be promoted conditional on rank, background, and experience. However, our results on the differential exit rate between the genders are consistent with previous results found for academics.

Section II describes our data and variable construction. Section III presents our empirical analysis. Section IV presents our decomposition, and Section V discusses our findings and concludes.

II. Data and Hierarchy Constructions

The main sample for this study consists of data on the 2,818 firms from the December 2006 version of the Standard and Poors (S\&P) ExecuComp database supplemented by the S\&P COMPUSTAT North America database and monthly stock price data from the Center for Securities Research database. We also gathered background history for a subsample of 16,300 executives, recovered by matching the 30,614 executives from our COMPUSTAT database for the period 1991 to 2006 using their full name, year of birth, and gender with the records in the Marquis Who's Who, which contains biographies of about 350,000 executives.

A. Main Sample

Most of the characteristics of the executives and firms in the main sample require no (further) explanation, but the construction of several variables merits remarks. The sample of firms was initially partitioned into three industrial sectors by GICS code. Sector 1, called primary, includes firms in energy (GICS:1010), materials (1510), industrials (2010, 2020, 2030), and utilities (5510). Sector 2, consumer goods, consists of firms from consumer discretionary (2510, 2520, 2530, 2540, 2550), and consumer staples (3010, 3020, 3030). Firms in health care (3510, 3520), financial services (4010, 4020, 4030, 4040), information technology, and telecommunication services (410, 4520, 4030, $4040,5010)$ comprise Sector 3, which we call services. In the main sample, 35% of the firms belong to the primary sector, 27% to consumer goods, and the remaining 38% to the services. Firm size was categorized by total employees and total assets. The sample mean value of total assets is $\$ 13.3$ billion (2006 US) with standard deviation $\$ 62$ billion, while the sample mean number of employees is 18,930 with standard deviation 52,520 .

Top executives are rarely paid like most other professionals, at a rate more or less equalized across a large market for similarly skilled workers after adjusting for cost of living and amenity indices. Executive compensation is tied instead to various indicators of managerial effort, such as the firm's performance. As such, we followed the literature on executive compensation and constructed the widely used measure of firm performance, abnormal returns on stock. Denote the total wage bill of executives in all positions by W_{t+1} and the dividend paid to shareholders by D_{t+1}. Let e_{t} denote the equity value of the firm at time t and $\bar{\pi}_{t+1}$ denote the return on the market portfolio. We then define the gross abnormal return to the firm before factoring the aggregate
compensation costs as

$$
\begin{equation*}
\pi_{t+1}=\frac{e_{t+1}-e_{t}+D_{t+1}}{e_{t}}+\frac{W_{t+1}}{e_{t}}-\bar{\pi}_{t+1} \tag{1}
\end{equation*}
$$

Abnormal return is then calculated using the formula in Equation (1), where the value of equity at the beginning and end of the year and dividends paid during the year are taken from the S\&P COMPUSTAT North America database and the market return is calculated using monthly stockprice data from the Center for Securities Research database.

B. Matched Sample

The matched sample consists of a subsample of 16,300 executives for whom we gathered background history. The matched data gives us unprecedented access to detailed firm characteristics, including accounting and financial data, along with managers' characteristics, namely the main components of their compensation, including pension, salary, bonus, option, and stock grants plus holdings, and their sociodemographic characteristics, including age, gender, education, and a comprehensive description of their career path sequence described by their annual transitions through the 35 possible positions. In the matched sample, 36% of the firms belong to the primary sector (as opposed to 35% for the main sample), 27% to consumer goods (the same as in the main sample) and the remaining 37% to the services sector (as opposed to the 38% in the main sample). Therefore, as far as the sectorial composition of the sample is concerned, the two sample are almost identical. The matched sample mean value of total assets is $\$ 13.8$ billion (2006 US) with standard deviation $\$ 63.2$ billion, while the matched sample mean number of employees is 19,600 with standard deviation 54,000 . The firms in the matched sample are slightly larger than the firms in the main sample on both measures of firm size.

C. Hierarchy Construction

The question of gender differences in mobility presupposes a hierarchy of ranks. The approach we take to constructing such a hierarchy builds on the personnel economics literature (see Baker, Gibbs, and Holmstrom, 1994a; Gibbons, 1999; Barmby, Bridges, Treble, and van Gameren, 2001). The purpose of the hierarchy is typically to study the relationship between job mobility and compensation; in order to do that, the hierarchy is constructed independent of compensation. Here, we
follow the approach in Baker et al. (1994a) of building a hierarchy based on executives' transitions across different jobs; we formalize the approach and generalize it to multiple firms. Because the hierarchy is constructed using patterns of transitions across different job titles, it captures career paths and life-cycle transitions. The data we use to construct a career hierarchy were compiled from annual records on 30,614 individual executives, taken from the S\&P ExecuComp database, itemizing their compensation and describing their title. Each executive worked for one of the 2,818 firms comprising the (composite) S\&P 500, Midcap, and Smallcap indices for at least one year spanning the period 1991 to 2006, which covers about 85% of the U.S. equities market. In the years for which we have observations, the executive was one of up to the top-paid eight in the firm, whose compensation was reported to the SEC. We coded the position of each executive in any given year with one of 35 abbreviated titles listed in Table 1, which formed the basis of our hierarchy. ${ }^{3}$

We define a career hierarchy as a rational (complete and transitive) ordering over a set of job titles based on transitions. Specifically, let J denote a finite collection of job titles, denoted $j \in\{1, \ldots, J\}$. We denote the probability of switching from the $j^{\text {th }}$ to the $k^{\text {th }}$ job by $p_{j k}$. Supposing $p_{j k} \geq p_{k j}$, we write $j \succeq k$. We also impose the property of transitivity. Thus, if $p_{j k} \geq p_{j^{\prime} j} \geq p_{j^{\prime \prime} j}$, then $j \succeq j^{\prime \prime}$. Finally, if $j \succeq k$ and $k \succeq j$, then $j \sim k$. If $j \succeq k$ but $j \nsim k$, then $j \succ k$, in which case we say that the $j^{\text {th }}$ job ranks higher than the $k^{\text {th }}$. Thus, indifference occurs if $p_{j k}=p_{k j}$, or if, for example, $p_{j k}>p_{k j}$ but $p_{k j} \geq p_{j^{\prime} j} \geq p_{j k}$. An ordered rank is ascribed to each of the distinct indifference sets, with Rank 1 topping the hierarchy.

Since there is only a finite number of jobs, the algorithm described above ensures the ranking is complete. This ranking has a second desirable property. Suppose we strengthened the requirement to say that $p_{j k}-p_{k j} \geq p$ for some $p>0$ as a necessary condition for $j \succ k$, then it is straightforward to show that we would end up with a coarser partition defining the hierarchy. Similarly relaxing our definition to say that $p_{j k}-p_{k j} \geq p$ for some $p<0$ as a sufficient condition for $j \succeq k$ would yield a coarser partition. In this respect, the definition we adopt maximizes the number of ranks.

Upon applying the algorithm to our data, summarized by the 35 job titles and the one-period estimated probability of job transitions, 14 ranks emerged, which are displayed in Figure 1. The numbered circles in the figure are keys to the job titles in Table 1, and each job title is aligned to its rank indicated on the left. To convey a sense of the life-cycle flow through jobs, we have drawn arrows pointing from title j to title k if at least 2% of the executives in job j move to job k the
next period. Because there are so few female executives, we further consolidated the 14 ranks into seven as presented in Table 1. Most of the hierarchy conforms more or less to the commonly held notion of the structure of the firm with the exception that Rank 1 is not the rank to which CEO belongs. Rank 2 includes the CEO position, whereas Rank 1 is reserved for the chairman of the board of directors, if that position is separated from the job of CEO. In hindsight, this is quite reasonable based on the reporting structure of a firm. As will become clear later when we compare compensation across this hierarchy, Rank 2 (to which CEO belongs) can be considered the top of the hierarchy and Rank 1 is a type of retirement or monitoring position.

D. Measuring Total Compensation for Executives

We followed Antle and Smith (1985, 1986), Hall and Liebman (1998), Margiotta and Miller (2000), and Gayle and Miller (2009a, 2009b) by using total compensation to measure executive compensation. Total compensation is the sum of salary and bonus, the value of restricted stocks and options granted, the value of retirement and long-term compensation schemes, plus changes in wealth from holding firm options, and changes in wealth from holding firm stock relative to a well-diversified market portfolio instead. Changes in wealth from holding firm stock and options reflect the costs managers incur from not being able to fully diversify their wealth portfolios because of restrictions on stock and option sales. When forming their portfolio of real and financial assets, managers recognize that part of the return from their firm-denominated securities should be attributed to aggregate factors, so they reduce their holdings of other stocks to neutralize those factors. Hence, the change in wealth from holding their firms' stock is the value of the stock at the beginning of the period multiplied by the abnormal return, defined as the residual component of returns that cannot be priced by aggregate factors the manager does not control. Table 2 shows the characteristics of the matched (Panel A) and full (Pane B) samples. In the full sample, the average total compensation is four times the average executive salary, confirming the well-documented fact that more than 75% of an executive's total compensation consists of firm-denominated securities and bonuses. Note that the ratio is even higher in the matched sample. This is because overall compensation and the fraction of nonsalary pay increases with firm size and the average firm is larger in our matched sample than in our main sample.

E. Measuring Exit from the Occupation of Top Executives

General management is a very broad and loosely defined occupational category. The identifying feature of the managers in our study is that they are so highly paid and exercise so much discretion within their firms that their employers make available for public scrutiny their compensation records, typically determined at the highest levels by an executive compensation committee. So for the purposes of this study, we define executive management as an occupation of general managers in publicly traded firms whose compensation and financial assets in their employer firm are reported to the Securities and Exchange Commission. Although firms are only required to report on their top five executives, the SEC accepts and publishes data from firms that provide the records on more employees, and most firms do. For all such firms, the SEC requirement is not a binding constraint, but a device to help the firms establish and maintain credibility with their shareholders and bondholders.

Like any tightly defined occupation, executive management is porous. People become executive managers through promotion within the firm or from another publicly traded company, transfer from a privately held company or a nonprofit organization, or coming out of retirement. They exit from executive management by retiring, by accepting less prestigious and less well-paid positions within management (having been overtaken by other executives within the company and sidelined without a title change or summarily demoted), by transferring to an organization not listed on an exchange (such as starting a sole proprietorship), or entering another occupation (that makes more use of previously acquired professional qualifications, for example). Nonetheless, it is instructive to compare the fortunes of top executives by gender since executive management epitomizes the pinnacle of employment within the firm. It is heavily dominated by men, but it is not their exclusive domain.

We construct a sample measure of this population's exit variable that captures the above types of exit from executive management. As such, we define our outside option called exit as an absorbing state: If an executive leaves all our data sets and does not return for four years, the executive is classified as exited. Note that the following are not classified as exit: If an executive disappears from the sample because the firm becomes a nonpublicly traded company; if the firm drops from the COMPUSTAT data sets; if the company is merged with another company and does not report any more; if the firm goes completely out of business; if the executive exits the sample
in the last four years of the sample. Less than 1% of those leaving for more than three years appear again in our data sets, showing that any potential right censuring is minimal. By this measure, 20% of our executives leave during our sample period according to Column (1) of Panel B in Table 2. In the matched sample, the exit rate is 26%.

F. Measuring Human Capital

Two types of human capital are measured and used in the analysis: formal education and job experience. There are five nondisjoint categories of formal education: No college degree, Bachelor degree, Masters of Business Administration (MBA), Masters of Science/Arts (MS/MA), Doctor of Philosophy (Ph.D.), and Professional Certification. While all the other categories are selfexplanatory, it is worth noting that Professional Certification includes accounting, engineering, legal, financial, and other professional certifications, such as chartered public accountant or certified financial analyst.

Four measures of experience were included to capture the potential different dimensions of on-the-job training. Managerial experience is the number of years elapsed since the manager was first recorded as holding one of the 41 titles listed in Table 1. Tenure is years spent working at the executive's current firm. We also track the number of different firms the executives have worked for over their careers, as well as the number of moves before becoming an executive. Promotion is an indicator variable for whether the manager was promoted in the previous year.

III. Empirical Results

This section documents gender differences in compensation and mobility patterns. Previous literature on the gender gap has conclusively shown that a major part of the gender pay gap can be attributed to gender differences in such background characteristics as education and work experience. However, existing papers on the executive pay gap do not have measures of education or work experience. In this section, we investigate whether a gender gap in executives' background characteristics exists.

We then explore the sources of the gender differences in compensation. Bertrand and Hallock (2001) find that after controlling for firm type and executive position, there is no economic or significant pay gap between female and male executives. They postulate that discrimination can still
manifest itself via unequal access to promotion between men and women. We replicate Bertrand and Hallock's (2001) results and proceed to explore possible explanations for these gaps by analyzing the effect of background characteristics and the gender differences in promotions, demotions, turnover, and exit.

A. Executive Background

Table 2 displays summary measures of the background variables and firm types by gender. Column (2) contains the men's sample means, Column (3) the women's sample means, and Column (4) the test statistics for difference between the male and female sample means. Female executives are less likely to hold a college degree than their male counterparts; 23% of female executives do not have a college degree as compared to 21% of male executives. This difference is statistically significant at the 5% level. Men and women executives are equally likely to obtain an MBA, which means that a higher fraction of women with a first degree go on to get an MBA. Male executives are more likely to have a Masters of Science or Arts, while female executives are more likely to have a Ph.D. Women are more likely to have a professional certification than men.

On average, women have two years less tenure in the firm and two and a half years less executive experience than men. Women are, on average, three years younger than men, they change firms less frequently than men before becoming executives, but there is no difference in the total number of firm changes. This means that women have more firms changes after becoming an executive. As noted in previous studies, there is some degree of gender segmentation by sector, with women concentrated more in the consumer goods sector while men are more concentrated in the primary sector. The genders are equally represented in the service sector. There is no significant gender difference in the size of firms.

Table 3 presents the characteristics of executives by rank. The average age declines from 60 to 52 between Ranks 1 and 3, but is more or less constant as rank falls off further. Similarly, average tenure is roughly constant in the lower and middle ranks at 14 , but rises to 15 and 17 for Ranks 2 and 1, respectively. The average gap between Ranks 1 and 3 in executive experience is six years. Relative to the lower ranks, Rank-1 and -2 executives are eight years older, with only six years more executive experience and just two years more tenure. Executives with MBA degrees are more concentrated in the top four ranks, those with other Masters or Ph.D. degrees are more
concentrated in the lower ranks. Average total compensation, its salary components, and their respective standard deviations rise by more than a factor of two from Rank 7 to Rank 2, in which they are at their maximum and even across genders, and decline slightly in Rank 1.

Table 3 also presents the sample means of executives' background characteristics, compensation, and firm characteristics by rank and gender. We focus on the gender differences in educational attainment, age, and job experience. The table shows that the gender differences in background characteristics are not constant across ranks. Women in Rank 1 are more educated than their male counterparts. Women and men CEOs (Rank 2) are equally educated, and the same is true of executives in Rank 3. At the lower ranks (i.e., Rank 3 through Rank 7), the results are less clear, depending on the type of educational attainment, male or female executives may be considered more educated. In Rank 4 women are less likely to have a college degree, MS/MA, Ph.D., or a professional certification, whereas they are significantly more likely to have an MBA than men. In Ranks 5 through 7, women are less likely to have a college degree than men. However, women are similar to men on other dimensions of educational attainment. In Rank 6, women and men are similar on all dimensions of educational attainment except that women are more likely to have a Ph.D. and to be professionally certified. This pattern changes again in Rank 7, with men and women equally likely to graduate from college, men more likely to have an MBA and women more likely to have a Ph.D.

The age difference between men and women declines with rank and is eventually eliminated by Rank 7. The exception to this general pattern is Rank 3, where there is no significant gender age difference. A similar pattern to age obtains for managerial experience, except that the gender difference is only equalized at Rank 7 and the gender difference is much larger than the gender difference in age in Rank 1. Men have almost 10 years more managerial experience than women in Rank 1, this difference falls to two years by Rank 2. A similar pattern holds for tenure. Women worked in fewer firms than men in every rank with the exception of Rank 2, Rank 6, and Rank 7. It is worth pointing out that women and men CEOs (i.e., Rank 2) are the same along this dimension which is not true for the other experience variables considered; in fact, women CEOs worked in more firms before becoming an executive than men.

In summary, female and male executives look very different in terms of educational attainment, age, and work experience. See Mincer and Polachek (1974), O'Neill and Polachek (1993), Wellington
(1993), and Gayle and Golan (2011) for similar findings for nonexecutives. These differences vary by rank and are smallest in Rank 2 and in low-level ranks.

B. Compensation

Table 2 shows the unconditional means of salary and total compensation by gender for the matched and full samples along with test statistics of the difference in means. In the full sample, men earn on average $\$ 80,000$ more than women in salary and $\$ 540,000$ more than women in total compensation. In the matched sample, men earn on average $\$ 84,000$ more in salary and $\$ 440,000$ more in total compensation. Table 3 describes salary and total compensation by rank and gender, showing that, controlling for rank, there is no gender pay difference in Rank 1, Rank 2 (i.e., CEOs), Rank 3 and Rank 5. In Rank 4, Rank 6, and Rank 7, men are paid more than women in salary, but not in total compensation. These results are consistent with Bertrand and Hallock (2001), who find no gender pay gap after controlling for the executives' rank.

Since men and women differ with respect to their background characteristics, we further explore the conditional gender pay gap. Table 4A presents the median regression estimates of gender's effect on total compensation, showing that including measures of educational attainment, age, and job experience in the compensation equation dramatically increases the compensation premium paid to female executives and their pay-for-performance sensitivity relative to male executives. It also suggests that the compensation premium paid to female executives is related to female executives' higher pay-for-performance sensitivity, relative to their male counterparts.

The results in Column (1) show that, without including any firm, sector, and executivecharacteristic controls, the median female executive is paid about $\$ 111,000$ less than her male counterparts. Column (2) adds measures of rank, abnormal return, age, firm size, and sector, showing that there is a statistically insignificant female premium of $\$ 41,000$. The female pay is less sensitive to the firm's performance: female executives earn about $\$ 253,000$ less than male executives for a 1% increase in their firms' abnormal return. Including these variables increases the regression's R^{2} to 24% from 1%. Column (3) shows that adding measures of executive educational attainment and job experience increases the female premium to $\$ 92,000$, while the gender gap in pay-for-performance sensitivity increases to $\$ 286,000$ for a 1% increase in the firm's abnormal return. The R^{2} of the regression increases slightly to 25%. Column (4) adds gender interactions
with the measures of job experience and educational attainment: the female premium increases to $\$ 266,000$ and the gender gap in pay-for-performance sensitivity increases to $\$ 327,000$ per 1% increase in the firm's abnormal return. Column (4) further shows that the returns to job experience do not differ by gender, but the returns to education do. Female executives receive $\$ 256,000$ more per year in compensation than their male counterparts if they do not have a college degree and $\$ 292,000$ more than men if they have an MBA degree.

To further explore the gender differences in pay for performance, Column (5) adds a dummy variable which takes the value of 1 if the abnormal return of the firm is negative, an interaction of the negative return dummy with abnormal returns, the negative abnormal return dummy interaction with gender, and an interaction of the negative return dummy with both abnormal return and gender. It shows that both the female pay premium and the gender gap in pay for performance disappear. The female pay premium now loads on the female negative return dummy and the gender gap in pay-for-performance sensitivity is now reversed; female executives are insured against negative abnormal return by being paid $\$ 309,000$ more than male executives when the abnormal return is negative. They also received $\$ 489,000$ more (less) than their male counterparts for a 1% increase (decrease) in their firms' abnormal return. Column (5) also shows that there is no difference between male and female executives' pay for performance when abnormal return is negative. These results contradict Albanesi and Olivetti's (2008) findings that female executives are punished more for negative returns but are rewarded less for positive returns. To determine if the differences stem from inclusion of background characteristics or because we use a more comprehensive measure of total compensation than used in Albanesi and Olivetti (2008), we repeat the exercise in Column (5) excluding the measures of executive background. The results are presented in Column (6), showing that there is a negative and insignificant female premium, but female executives are rewarded more for positive abnormal returns and punished less for negative abnormal returns than their male counterparts. This suggests that the difference in results between this paper and Albanesi and Olivetti (2008) are likely due to our more comprehensive measure of total compensation.

Table 4B presents the median regression estimates of the effect of gender on salary. It shows that there is a significant gender gap in salary of $\$ 10,000$ even when one includes measures of executive background. However, this gender salary gap disappears when we allow for gender-specific returns to education and job experience. Column (1) does not include any control for rank, firm
characteristics, sector, or executive background characteristics, indicating that the median woman is paid about $\$ 77,000$ less than her male counterpart in salary. Column (2) adds measures of rank, abnormal return, age, firm size, and sector; the gender effect decreases to a (statistically insignificant) $\$ 10,000$ salary gap and female executives have the same salary-for-performance sensitivity as their male counterparts. Column (3) adds measures of educational attainment and job experience, indicating no change in the results from Column (2). Column (4) adds gender interactions with the measures of job experience and educational attainment, showing that the gender salary gap disappears, but that there is still a gender gap in salary-for-performance sensitivity. It also shows that the returns to job experience do not differ by gender, whereas the returns to educational attainment do. Column (5) adds a dummy variable for negative abnormal return, an interaction of the negative return dummy with abnormal returns, the negative abnormal return dummy interacted with gender, and an interaction of the negative return dummy with both abnormal return and gender. There are, however, no significant changes in the results from Column (4).

C. Mobility

The results in Tables 4A and 4B do not rule out the possibility of gender discrimination; fewer women than men make it to the top of the hierarchy and this could be a channel of gender discrimination. Tables 5 and 6 present the internal and external transition-probability matrices by gender. The two most conspicuous features of these tables are the small fraction of women versus men in Rank 1 and the high incidence of women CEOs (Rank 2) who change firms and remain CEOs compared to men. Only 57% of male CEOs who change firms remain CEOs in their new firm while 93% of female CEOs remain CEOs in their new firm. Table 7 presents the results of the chi-squared contingent-table test of the gender differences in transitions. Panel A uses the complete transition matrix of all seven ranks and shows that both internal and external transitions differ significantly by gender. Panel B normalizes the transition because there are significantly more male than female executives; this does not have any effect on the results. Panel C excludes Rank 1 from consideration and the internal transitions differ significantly by gender but not the external transitions.

The above results do not take into consideration executive and firm characteristics, which we explore in the following regressions. Table 8 presents the multinominal logit coefficient estimates
of the effect of gender on one-period transitions. The dependent variable is a categorical variable of the 14 Options defined for executives who are observed for two consecutive periods. Columns (1) through (7) correspond to employment in Ranks 1 through 7 in the following period if the executive remains employed in the current firm, whereas Columns (8) through (14) correspond to employment in Ranks 1 through 7 in the following period if the executive is employed by a different firm. The baseline omitted category is Option 2, thus the coefficient estimates are normalized relative to being a CEO in your current firm. The estimation results show that there are significant gender differences in both the external and internal transition, conditional on executive and firm characteristics. It is difficult, however, to ascertain whether female executives are disadvantaged relative male executives. For example, female executives in Rank 2 (i.e., CEOs) are less likely to move to Ranks 3, 6, and 7 internally, relative to remaining in Rank 2. At the same time, they are more likely than men to move internally to Rank 4 . Women are more likely than men to move to Rank 2 in a different firm and are less likely to move to any other position in a different firm. We therefore estimated binary logits on promotion, demotion, and turnover to get a better sense of differences in directional changes in mobility between men and women.

Table 9 presents the binary logit coefficient estimates of the effect of gender on one-period promotions, demotions, and turnover. It shows that women are 27% more likely to be promoted than men internally and are promoted at the same rates externally, while there is no gender difference in the rate of demotion and turnover. Column (1) includes neither educational attainment nor job experience variables and indicates no significant gender differences in the rates of internal and external transitions. Column (2) adds gender-age interactions, making the internal female effect larger and significant. The external female effect remains insignificant. There is now a negative female effect on age, showing that younger women are more likely to be promoted than younger men. Column (3) shows that this general pattern is repeated even when educational attainment, job experience, and gender interaction variables are included. Columns (4), (5), and (6) show that there are no gender differences in demotions; Columns (7), (8), and (9) show that there are no gender differences in the turnover.

We find significant differences between male and female mobility rates which, on the surface, seem to favor women. Women are promoted more than men internally and at the same rate externally. In addition, women are promoted at a younger age.

D. Occupation Exit Rates

An important question in the gender-gap literature is whether women have weaker attachment to their jobs and the labor market than men do. For example, Gayle and Golan (2011) shows that weaker labor market attachment among women accounts for the gender earnings gap at early ages. Here, we analyze this question in the market for executives, who are normally beyond child-bearing age. Thus, we do not attribute exit to fertility and childcare considerations.

Table 2 shows that in both the matched and full samples women exit the executive occupation at a higher rate than men; in matched sample, there is a 5% differences in the exit probability and 3% in the full sample. Table 3 shows that most of this difference in exit rate can be attributed to exit at the lower ranks. There is no difference in the occupation exit rates in Rank 1, Rank 2, and Rank 3, but women exit the occupation at a substantially higher rate in all other ranks. Table 10 presents the binary logit coefficient estimates of the effect of gender on the occupation exit rate. It shows that, controlling for executives and firms characteristics, women at all ranks exit the executive occupation at higher rates than men. Column (1) includes neither educational attainment nor job experience variables and indicates that women at all ranks are 76% more likely to exit the executive occupation than similar men. Column (2) adds education and job experience variables and gender interactions showing that the female effect increases to 158%.

Table 10 also shows that all executives are less likely to exit the occupation when their firms do well; the coefficient estimates on abnormal return and lagged abnormal return are both negative and significant. To examine if women executives are judged more harshly than their male counterparts, or whether female executives are under more scrutiny because top management is a male-dominated occupation, we add interaction terms of female and abnormal return. The results reported in Column (3) show that the female coefficient is small and statistically insignificant, indicating that there is no significant gender difference in the likelihood of exit when the firm performs worse than the market. Column (4) adds negative abnormal return and gender interactions without changing the previous results. Column (5) adds CEO and female interaction terms with negative abnormal return; while CEOs are more likely than other executives to exit when the firm performs badly, we do not find evidence for gender differences.

E. Summary and Robustness

The above empirical analysis shows that female and male executives differ with regards to educational attainment and job experience. Female executives are on average two years younger and have less job experience by most measures. It also shows that conditional on firm and executive characteristics, female executives are paid more in total compensation and have higher pay for performance than their male counterparts. The higher pay is related to the higher volatility in pay induced by the higher pay for performance. In terms of mobility, women are promoted at a higher rate than men but also exit at a much higher rate. These findings, however, are based the matched sample which is not completely representative of the full sample. Table 2 Panel B presents the summary statistics of the full sample. It shows that while the magnitudes are different, the qualitative features of the full sample are preserved by the matched sample. The main differences between the full and matched samples are the exit rates, compensation, and firm size. The exit rates are higher in the matched sample, but the differences between male and female executives are qualitatively similar. The compensation is also higher in the matched sample and the executives are drawn from larger firms. These two features are intertwined in that compensation is positively related to firm size. Panel B of Table 3 shows the characteristics of the full sample by rank. The magnitudes are again different from the matched sample, but the qualitative patterns are similar. Here we are able to confirm that in both samples there are no differences by gender in total compensation conditional on rank. By using the matched sample in our analysis, the results may overstate the magnitude of the gender differences. We are, however, confident that the qualitative patterns are the same as in the full sample.

IV. Decomposition

Our empirical results suggest that three main factors might explain the findings that female executives earn less than their male counterparts, even though they are paid significantly more at most ranks for the same experience and their overall rate of promotion is greater than men's. First, women have different characteristics than men when they become top executives. Notably, they differ in their mix of experience, which might affect their career trajectories through the executive ranks. Second, in a profession that rewards experience, given the same background and experience, women are more likely to exit the occupation. Third while, within the firm, women are promoted
more quickly than men, they are promoted at younger ages. To disentangle and quantify the effect of these factors, we construct a dynamic system from the estimated equations obtained in the previous sections to explain how they affect the length of careers, how high executives of different types climb the career ladder, and how executive compensation evolves with rank and over time.

A. Framework

Let h denote a set of state variables characterizing firm-specific and general human capital that help determine compensation and job transitions between and within firms. Let $p_{t}\left(r^{\prime}, h^{\prime} \mid r, h\right)$ denote the joint probability that an executive aged $t \in\left\{t_{0}, t_{0}+1, \ldots\right\}$ holding $\operatorname{rank} r \in\{1,2, \ldots, R\}$ and experience $h \in H$ moves to rank $r^{\prime} \in\{1,2, \ldots, R\}$ and acquires experience $h^{\prime} \in H$ next period, conditional on remaining in executive management for another period. Let $p_{t r 0}(h)$ denote the corresponding probability of retiring at age t from rank r and $q\left(t_{0}, r, h\right)$ denote the joint distribution of r and h at some starting age t_{0}. Then $q(t, r, h)$-the joint probability that a person who was an executive at age t_{0} is still in the executive population at age t, and at that age holds rank r and has experience h-is recursively defined by

$$
\begin{equation*}
q\left(t+1, s, h^{\prime}\right)=\sum_{h}^{H} \sum_{r=1}^{R} p_{t}\left(s, h^{\prime} \mid r, h\right)\left[1-p_{t r 0}(h)\right] q_{t r}(t, r, h) . \tag{2}
\end{equation*}
$$

Hence, the survivor function, denoted by Q_{t}, can be expressed as

$$
\begin{equation*}
Q_{t}=\sum_{r=1}^{R} \sum_{h=1}^{H} q(t, r, h) . \tag{3}
\end{equation*}
$$

Summing over Q_{t}, we obtain the expected future duration in management for an executive at age t_{0} defined by

$$
\begin{equation*}
T \equiv \sum_{t=t_{0}}^{\infty} Q_{t} . \tag{4}
\end{equation*}
$$

Finally, let $w_{t r}(h)$ denote compensation as a function of human capital, rank, and age. The expected undiscounted cumulative earnings are therefore

$$
\begin{equation*}
W \equiv \sum_{t=t_{0}}^{\infty} \sum_{r=1}^{R} \sum_{h=1}^{H} w_{t r}(h) q(t, r, h) \tag{5}
\end{equation*}
$$

Hence, expected compensation per period, averaged over time spent in the occupation, is $T^{-1} W$.
This framework is then used to conduct dynamic decompositions, illustrating the quantitative impact of different features of the background variables; wage regressions; transition probabilities for promotions, demotions, and firm mobility; and occupation exit rate on the gender gap in executive careers.

B. The Effect of Occupation Exit

In principle, differential occupation exit rates, rank transition probabilities, or initial conditions can explain the men's longer duration in executive management. To quantify comparisons between female and male executive careers, it is convenient to let an f superscript stand for women and an m superscript stand for men, writing $q^{(g)}\left(t_{0}, r, h\right)$ for $q\left(t_{0}, r, h\right)$ and $p_{t}^{(g)}\left(s, h^{\prime} \mid r, h\right)$ for $p_{t}\left(s, h^{\prime} \mid r, h\right)$ when referring to an executive of gender $g \in\{f, m\}$. Thus, the defective distribution of ranks conditional on human capital, age, and gender is recursively defined as

$$
\begin{equation*}
q^{(f)}\left(t+1, s, h^{\prime}\right)=\sum_{h}^{H} \sum_{r=1}^{R} p_{t}^{(f)}\left(s, h^{\prime} \mid r, h\right)\left[1-p_{t r 0}^{(f)}(h)\right] q^{(f)}(t, r, h), \tag{6}
\end{equation*}
$$

for initial probabilities $q^{(f)}\left(t_{0}, r, h\right)$, and for men in an analogous manner. As we have previously shown, the differential occupational exit rates between the genders creates a spurious gap in average lifetime compensation if average compensation rises with ranks that are defined using a life-cycle criterion. The empirical results show that women are 158% more likely to exit the occupation than men. To illustrate the quantitative importance of this point, we computed the survivor rates for the population, and showed how they are affected by different features of gender-specific behavior.

In our empirical model, there are seven ranks $(R=7)$. Executive experience $\left(E E X P_{t}\right)$, tenure with the firm $\left(T E N_{t}\right)$, the number of firm changes $\left(N F C_{t}\right)$, and the number of firm changes before becoming an executive $\left(\mathrm{NFCBE}_{t}\right)$ are affected by past outcomes and also help determine future outcomes. We define experience by $h_{t} \equiv\left(E E X P_{t}, T E N_{t}, N F C_{t}, N F C B E_{t}\right)$. By definition, h_{t} follows the law of motion:

$$
h_{t+1}=k_{t} \Gamma_{1}\left(h_{t}\right)+\left(1-k_{t}\right) \Gamma_{0}\left(h_{t}\right),
$$

where $k_{t} \in\{0,1\}$ is an indicator variable for staying in the firm versus moving to another firm and

$$
\begin{aligned}
\Gamma_{1}\left(h_{t}\right) & \equiv\left(E E X P_{t}+1,0, N F C_{t}+1, N F C B E_{t}\right) \\
\Gamma_{0}\left(h_{t}\right) & \equiv\left(E E X P_{t}+1, T E N_{t}+1, N P M_{t}, N F C B E_{t}\right)
\end{aligned}
$$

Estimates of experience and rank, $p_{t r 0}(h)$, the exit rate as a function of the same variables, and $p_{t}\left(s, h^{\prime} \mid r, h\right)$, the rank-and-experience transition probability, were found by respectively integrating the exit hazard and transition probability with respect to the remaining variables: educational background, firm size, sector characteristics, and excess returns.

Since age is a significant determinant of compensation and rank, we computed all our measures for executives who were in executive management at the median age, 49, and also at the 20th percentile, 39. Table 11 displays the probability distribution over the ranks and backgrounds of executives by gender for those two age groups. The top two ranks include 13% of the 39 -year-old men compared to 1% of the women at that age. At age 49 , however, 22% of the men are at the top two positions, whereas 12% of women are in those ranks. Yet, 39 -year-old women have as much managerial experience as their male counterparts, while 49-year-old women have a little less. Controlling for age, women have slightly less tenure and exhibit more job movement.

Figure 2 and the first panel in Table 13 depict the survival function by gender $g \in\{f, m\}$, now denoted by $Q_{t}^{(g)}$ found by substituting $q^{(g)}(t, r, h)$ for $q(t, r, h)$ in Equation (3), for $t_{0}=39$ and $t_{0}=49$. At both ages, just over one third of female executives leave after one year, and only about 10% survive six years or more. The survivor rate for men is much higher. Over 80% last more than a year, and more than 20% longer than six years, the older group of men experiencing less exit than younger ones. From our estimates of the survivor function, we computed $T_{t_{0}}^{(g)} \equiv \sum_{t=t_{0}}^{75} Q_{t}^{(g)}$, the gender specific analogue to Equation (4), total expected future career length for an executive of gender $g \in\{m, f\}$ and age t_{0}. The top two entries in the two panels of Table 12 show that regardless of the two methods of selection, being an executive manager at age 49 and being an executive manager at age 39, the expected remaining duration in executive management is just over three years for women and about five for men, almost two years longer for men versus women.

Suppose women changed in just one respect, by following the exit behavior of men. That is, instead of the discrete hazard $p_{t r 0}^{(f)}(h)$, we now suppose $p_{t r 0}^{(m)}(h)$ applied. Denoting the defective
probability distribution for describing the survivors in this counterfactual by $q^{(\text {exit })}(t, r, h)$, we computed estimates of $q^{(\text {exit })}(t, r, h)$ from the recursion

$$
\begin{equation*}
q^{(\mathrm{exit})}\left(t+1, s, h^{\prime}\right)=\sum_{h}^{H} \sum_{r=1}^{R} p_{t}^{(f)}\left(s, h^{\prime} \mid r, h\right)\left[1-p_{t r 0}^{(m)}(h)\right] q^{(\mathrm{exit})}(t, r, h) \tag{7}
\end{equation*}
$$

by replacing $p_{t r 0}^{(f)}(h)$ with $p_{t r 0}^{(m)}(h)$ and $q^{(f)}(t, r, h)$ with $q^{(\text {exit })}(t, r, h)$ in Equation (6). Summing $q^{(\text {exit })}(t, r, h)$ over h and r, we obtained the survivor function for women when they leave from the sample population at the same rate as men given the same experience and rank. From Figure 2, we see that this counterfactual exercise practically closes the gender gap between the survivor functions. Reflecting the importance of this factor, Table 12 shows that the expected career duration increases one and a half years to about four and a half years, not quite equalizing the expected career lengths for the genders.

Another counterfactual, which speaks to the question of why women tend to have shorter careers, is to replace $p_{t}^{(f)}\left(s, h^{\prime} \mid r, h\right)$ with $p_{t}^{(m)}\left(s, h^{\prime} \mid r, h\right)$ in Equation (7) to obtain

$$
q^{(\mathrm{rank})}\left(t+1, s, h^{\prime}\right)=\sum_{h}^{H} \sum_{r=1}^{R} p_{t}^{(m)}\left(s, h^{\prime} \mid r, h\right)\left[1-p_{t r 0}^{(f)}(h)\right] q^{(\mathrm{rank})}(t, r, h)
$$

This would generate the survivor function for women if they experienced the same rank transitions as men throughout their careers in executive management, and tell us whether women executives tend to gravitate to "dead-end" positions that are associated with higher rates of exit. We can also calculate the differential effect of initial conditions on women by replacing $q^{(f)}\left(t_{0}, r, h\right)$ with $q^{(m)}\left(t_{0}, r, h\right)$ and $q^{(f)}(t, r, h)$ with $q^{(\text {initial })}(t, r, h)$ in Equation (7), defined in an analogous way. Since there are fewer female executives than male executives, there may be greater selectivity into the sample by those women who are less likely to leave the sample population, suggesting that the aggregate rate of female exit in some sense understates the underlying process.

As an empirical matter, gender differences in the rank transition probabilities and initial conditions affect the differences in the survivor functions only minimally. Replacing $p_{t}^{(f)}\left(s, h^{\prime} \mid r, h\right)$ with $p_{t}^{(m)}\left(s, h^{\prime} \mid r, h\right)$ and $q^{(f)}(t, r, h)$ with $q^{(\mathrm{rank})}(t, r, h)$ in Equation (6) yields the survivor function for women if they experienced the same rank transitions as men throughout their careers in executive management. Similarly, we calculated the differential effect of initial conditions on women by replacing $q^{(f)}\left(t_{0}, r, h\right)$ with $q^{(m)}\left(t_{0}, r, h\right)$ and $q^{(f)}(t, r, h)$ with $q^{(\text {initial })}(t, r, h)$ in Equation (6). In
both cases, the shift in the survivor function is barely visible at this level of resolution. From Table 10 , swapping the initial conditions, or changing the transition probability, increases the expected career length for female executives in the panel at 39 and 49 by less than a month. Summarizing, the direct effect of exit rate explains most of the difference in career length of female and male executive managers.

C. Is There a Glass Ceiling?

With estimates of $q^{(g)}(t, r, h)$, we can now answer whether women executives are less likely than men to achieve the pinnacle of executive management and if so, why. The probability that an executive in the population at t_{0} with gender $g \in\{f, m\}$ is a CEO (in Rank 2) at age $t \geq t_{0}$ is

$$
\begin{equation*}
q^{(g)}(t, 2)=\sum_{h=1}^{H} q^{(g)}(t, 2, h) . \tag{8}
\end{equation*}
$$

The top two panels of Figure 3 show that executives in the sample at 49 are more than twice as likely to be a CEO than an executive in the sample 10 years younger, reflecting our life-cycle approach to the definition of a career hierarchy. Female executives in the population at either age are less than half as likely to be CEOs as men.

What explains these gender differences? Are women promoted within the firm more slowly and less likely to accept attractive offers from other firms? We set $g=$ rank in Equation (8) and checked how much the probability of being a CEO increased when women transitioned through the ranks following the same transition matrix as men. Figure 3 and the last four panels of Table 13 show that the effect of this counterfactual is small. In other words, the gender differential in probability of being a CEO is primarily due to differences in the other two factors, exit rate and initial conditions.

Setting $g=$ initial in Equation (8) yields the probability of a woman executive at age t_{0}, being a CEO at age t if she had been assigned the initial endowment of men. By construction, the probability at t_{0} is equal, but it quickly falls off, partly because of the differential exit rates. Breaking things down further, we investigated to what extent their initial assignment, conditional on their past experience, is a determining factor, versus the different background they have at the time. We found that only the initial rank counts, not initial differences in executive experience, industry background, or education. Setting $g=$ rinitial produces a line in Figure 3 that practically
overlays the $g=$ initial line.
The higher rate of female exit shrinks the pool of female candidates eligible to be CEO, thus contributing to the gender differences. If female exit patterns mimicked those of their male colleagues, would the sequence of probabilities close the gap? Upon setting $g=$ exit in Equation (8), Figure 3 shows that the sequence of probabilities would increase, but not close the gap. Thus, both initial conditions and exit rate are important explanatory factors for why women are less likely to make CEO than men.

We can eliminate the effects of exit rate, and mitigate through the passage of time, the effects of the initial conditions, by analyzing the pool of survivors. The probability of being a CEO with gender g at age t conditional on belonging to the population at age t_{0} and remaining in it until at least age t is

$$
\begin{equation*}
q^{(g)}(t, 2)=\frac{\sum_{h=1}^{H} q^{(g)}(t, 2, h)}{\sum_{r=1}^{R} \sum_{h=1}^{H} q^{(g)}(t, r, h)} \tag{9}
\end{equation*}
$$

The panels in the second row of Figure 3 (and the third panel in Table 13) have two notable features that characterize both age groups. Conditional on survival, the probability of being a CEO increases for more than a decade, rising to and then remaining above one half for a further 10 years (and longer for the younger group). More remarkably, amongst those who survive longer than 15 years, a woman invariably has a higher probability of being a CEO than a man! This finding contradicts the common belief that women face glass ceilings.

There are, of course, alternative definitions of top management, and we investigated whether our conclusions are sensitive to them. In our career hierarchy, chairmen who are not also officers directly under the CEO (such as the CFO and the COO) are classified in Rank 1. Rather than focus on Expression (8) only, we also experimented with a more inclusive definition of top executive position by combining the two top ranks, and recomputing the comparable panels of the second row. The probability of being in the two top ranks with gender g at age t conditional on belonging to the population at age t_{0} and surviving until age t at least is

$$
q^{(g)}(t, 2)+q^{(g)}(t, 1)=\frac{\sum_{r=1}^{2} \sum_{h=1}^{H} q^{(g)}(t, r, h)}{\sum_{r=1}^{R} \sum_{h=1}^{H} q^{(g)}(t, r, h)} .
$$

There is little to distinguish between the second-row panels and fourth-row panels, which depict
our estimates of $q^{(g)}(t, 2)+q^{(g)}(t, 1)$. Using either definition of top management, our results provide scant support for the view that female executives in publicly listed companies face glass ceilings.

An alternative approach to measuring female representation at the highest levels of management is to compute, by gender, the fraction of executives who pass through the rank of CEO before retiring. Denote by $q^{(\operatorname{CEO}, g)}(t, 2)$ the number of executives who were in the sample at age $t_{0} \in\{39,49\}$ and had at least one year of CEO experience by age t, as a fraction of the sum of this number plus executives who are still waiting for the job of CEO, having neither quit the sample by age t nor made CEO. Within our framework, this is equivalent to treating the CEO rank as an absorbing state, thus eliminating CEO exit, leaving the other exit probabilities unchanged, and assuming that an executive attaining the rank of CEO never changes rank again. ${ }^{4}$ Thus,

$$
q^{(\mathrm{CEO}, g)}\left(t+1, s, h^{\prime}\right)=\sum_{h}^{H} \sum_{r=1}^{R} p_{t}^{(\mathrm{CEO}, g)}\left(s, h^{\prime} \mid r, h\right)\left[1-p_{t r 0}^{(\mathrm{CEO}, g)}(h)\right] q^{(\mathrm{CEO}, g)}(t, r, h)
$$

and

$$
q^{(\mathrm{CEO}, g)}(t, 2)=\frac{\sum_{h=1}^{H} q^{(C E O, g)}(t, 2, h)}{\sum_{r=1}^{R} \sum_{h=1}^{H} q^{(\mathrm{CEO}, g)}(t, r, h)} .
$$

From the third panel of Figure 3 (or fourth panel of Table 13), we see that the crossover occurs earlier than in the second panel, thus validating our finding: Amongst survivors, women have a higher probability of reaching the position of CEO than men. The fact that their crossover age is about two years younger indicates that their tenure as a CEO is also a little lower, partly attributable to their higher rate of exit.

D. Lifetime Compensation

Although female executives are paid more than male executives for a specific experience vector at any given rank, and have a higher probability of attaining the position of CEO than male executives conditional on remaining in top management, they exit more than men from these very senior positions. This reduces the net present value of their lifetime earnings in this occupation. In this section, we decompose the gender compensation gap into the amount due to differential occupation exit rates, rank transition probability, and initial conditions. In this part of the study, we focus on two measures of lifetime earnings. The first measure is the sum of discounted expected
earnings from executive management:

$$
\begin{equation*}
V_{t_{0}}^{(g)} \equiv \sum_{t=t_{0}}^{\infty} \sum_{r=1}^{R} \sum_{h=1}^{H} \beta^{t-t_{0}} w_{t r}^{(g)}(h) q^{(g)}(t, r, h) \tag{10}
\end{equation*}
$$

where β is the subjective discount factor and $w_{t r}^{(g)}(h)$ is the estimate of executives' expected compensation conditional on age, gender, rank, and human capital. The second measure we use is average annual career wages, which corresponds to the steady-state cross-sectional average earnings. Average annual career earnings can be expressed as the ratio $W_{t_{0}}^{(g)} / T_{t_{0}}^{(g)}$, where $W_{t_{0}}^{(f)}$ is just Equation (5) defined for women executives, undiscounted expected future earnings for t_{0}-year-old female executives, averaged over their experience and ranks:

$$
\begin{equation*}
W_{t_{0}}^{(f)} \equiv \sum_{t=t_{0}}^{\infty} \sum_{r=1}^{R} \sum_{h=1}^{H} w_{t r}^{(f)}(h) q^{(f)}(t, r, h) \tag{11}
\end{equation*}
$$

Integrating the estimates obtained from the compensation regressions reported in Table 4A to obtain $w_{t r}(h)$, we calculated estimates of average career wage over that time, $W_{t_{0}}^{(f)} / T_{t_{0}}^{(f)}$, and expected discounted sum of compensation $V_{t_{0}}^{(f)}$ from age t_{0} onwards, as well as the analogous quantities for men, setting the discount factor to $\beta=0.9$. Then we computed counterfactuals for these numbers by endowing female executives with some of the factors that determine the executive careers of men.

The top entries in the middle column of the two panels of Table 12 imply that the estimated gender gap in (undiscounted) annual compensation for executives at age 39 and 49 averaged over the remainder of their management career is about $\$ 100,000$. Given the longer career horizon of men, at a 10% discount factor this translates to a present value of about $\$ 2$ million, which can be deduced from the third column. The gender gap in these career measures of executive compensation is not attributable to unequal pay for equal work. Our compensation regressions, reported in Table 4A, showed that at any given rank women are paid more for the same experience credentials. Substituting $q^{(m)}(t, r, h)$ for $q^{(f)}(t, r, h)$ in Equations (11) and (10) for $t_{0} \in\{39,49\}$, we find that the men would benefit about $\$ 100,000$ per year on average from receiving the compensation package of women, all else the same, which translates to about $\$ 400,000$ in present value terms over their careers as executives, numbers that follow from differencing the top from the bottom numbers in the middle and right columns of Table 12.

We investigated the effect of assigning the initial male distribution of ranks to female executives, substituting $q_{t r}^{(\text {initial })}(h)$ for $q_{t r}^{(f)}(h)$ in Equations (10) and (11), and computing $W_{t_{0}}^{(\text {initial })} / T_{t_{0}}^{(\text {initial) }}$ and $V_{t_{0}}^{(\text {initial })}$. Table 12 shows that the initial assignment has greater impact (rising by $\$ 134,600$ for the older group, $\$ 76,400$ for the younger) than the transition probability computed in a similar fashion (where the numbers are $\$ 65,500$ and $\$ 55,900$, respectively). Most of the effect from switching the initial endowments comes from switching the initial rank alone, obtained by computing $W_{t_{0}}^{(\text {rinitial })} / T_{t_{0}}^{(\text {rinitial })}$ and $V_{t_{0}}^{(\text {rinitial })}$. Indeed, giving 49-year-old female executives the distribution of male initial experience actually reduces their average annual earnings throughout their career. Note that because these changes hardly affect the survivor function, the effect on discounted career earnings is attenuated.

Giving female executives the same exit rates as male executives significantly lengthens their expected durations and, for that reason alone, generates higher expected discounted sums. To determine the effect of imposing male exit rates on women, we substituted $q^{(\text {exit })}(t, r, h)$ for $q^{(f)}(t, r, h)$ in Equations (10) and (11) and computed $W_{t_{0}}^{(\text {exit })} / T_{t_{0}}^{(\text {exit) }}$. The gender gap for discounted earnings over the remaining career declines substantially from $\$ 2.3$ million to $\$ 699,000$ for 49-year-old executives and even more for 39 -year-old executives, from $\$ 1.85$ million to $\$ 249,000$. However, the evidence from annual average career compensation is inconclusive. If 39 -year-old female executives substituted male exit behavior for their own, then their annual compensation would rise by $\$ 69,100$ per year, but for 49-year-old executives, compensation would actually fall by $\$ 44,800$.

In identifying the most important factors driving the average annual gender compensation gap, we should distinguish between the two age groups. Focusing first on the top panel, we see that if 49-year-old female executives had been assigned the initial rank distribution for men, their average career wage, $\$ 2,296,800$ would have surpassed the corresponding figure for men $(\$ 2,195,200)$ by about $\$ 100,000$. The remaining factors, gender differences in exit rates, job transitions, and the initial distribution of experience, collectively accounted for less than $\$ 2,000$ per year of the differential between what women and men would earn if they received female compensation awards. Thus, for the older group, the initial distribution of ranks fully accounts for the pay gap between men and women. This result contrasts with our findings for the younger group of executives, where switching the exit rate plays a much greater role in closing the gap between female average earnings and the hypothetical earnings men would make from receiving female wages. The effect on total
earnings from spending an average of an extra 18 months in executive management is therefore more pronounced at 39 than at 49 .

Tables 12 and 13 show that the gender differences in compensation, expected career length, and the probability of becoming a CEO are almost entirely accounted for by differences in exit rates, transitions rates, and initial conditions. Table 12 presents a summary measure of all the other components of the decomposition; it combines the per period compensation, expected career length, and rank distribution into one measure, expected lifetime compensation. It shows that the gender differences are more pronounced at age 49 than at age 39. At 49 the gaps are accounted for by gender differences in the distributions of rank and experience at that age and the exit and job-transition rates thereafter. At 39 the gaps are accounted for by the gender differences in exit and job-transition rates. However the gender differences in the distributions of experience and rank at age 39 are not important.

The differences between the distributions of rank and experience at ages 39 and 49 are due to a combination of exit and job-transition rates during that time. This means that gender differences in exit and job-transition rates are more important in explaining the gender differences in career outcomes than gender differences in the distributions of rank and experience at age 39. This suggests that differences in exit and job-transition rates before age 39 may account for the gender differences observed at age 39 .

V. Discussion and Conclusion

Our empirical analysis shows that female executives have different backgrounds and experience from male executives and that women are paid more and have higher pay-for-performance sensitivity than men conditional on rank, background, and experience. We also find that women are promoted more quickly internally but display similar rates of external promotion to men; however, women and men have similar demotion rates. The higher rate of promotion results in female executives at the upper levels of the hierarchy having significantly less job experience than male executives. Female executives, however, have a higher exit rate than men and the probability of a female executive becoming CEO is less than half that of male executives at every age. Our decomposition shows that the male executives' survival rate is twice that of female executives. The gender differences in career length are accounted for completely by the difference in exit rates, and, conditional on
survival as an executive at any age, women have a higher probability of becoming a CEO. The average career compensation of female executives is lower than that of male executives, but it is higher than male executives' if female executives are assigned the male initial experience, the male initial rank assignment, or the male career experience distribution.

Suppose executives have concave utility over consumption and there are no gender differences in preferences and unobserved ability. Suppose that lower level ranks provide more opportunities for investment in human capital and that a longer tenure and experience in these ranks increase the productivity of executives more than tenure and experience in higher ranks. If women have an exogenously higher non-market outside option than men, then a model of moral hazard, investment in human capital, and career concerns can account for most of the above findings (see Gayle, Golan and Miller (2011)).

An exogenously higher non-market outside option implies that women at all ranks and experience level would exit at higher rate than men. A higher female exit rate has two separate effects; the first is that female executives would gravitate to higher ranks and spend less time investing in human capital. This would explain the higher female promotion rate, the lower human capital of female in higher ranks, and the unconditional gender pay gap. The second effect is that female executives would have less incentive to exert effort than male executives because, on average, their careers are shorter. Since their career concerns motive is weaker, females require more incentive pay to align their incentives with those of their employer firms than their male counterparts. Therefore their compensation is tied more closely to the firm's performance with a higher risk premium.

Suppose that expected compensation reflects an executive's marginal product, that marginal product is equalized across genders, and females are paid the same expected compensation as their male counterparts. Equalizing expected compensation with a higher risk premium implies a lower certainty equivalent compensation. Being paid a lower certainty equivalent compensation makes a job even less attractive to females, and thus amplifies the higher female quit rate. These explanations appear consistent with our findings and are not based on discrimination.

There is still a question of why women have a higher nonmarket outside option than men. One explanation is that women acquire more nonmarket human capital than men throughout their lives, and hence find retirement a relatively attractive option. Women in the top executive market are mostly beyond childbearing age, but there is evidence that such women are more likely to leave for
personal and other household reasons than their male counterparts. For example, Sicherman (1996) finds that in a case study of a large insurance company, female executives were more likely than their male counterparts to exit the firm because of better working conditions elsewhere, to be near home, change of residence, household duties, personal heath, illness in the family, and positions abolished. Most of those reasons, except position abolished, are voluntary departures related to home or family. Other unobserved factors leading managers to exit could include more unpleasantness, indignities, and tougher unrewarding assignments at work, examples of factors that reduce the attraction of work without necessarily affecting productivity or human-capital acquisition. Perhaps women are subject to this form of gender discrimination.

Another possible explanation for the higher female exit rates is differential treatment of men and women with the same expected ability in this market. Perhaps there is more uncertainty about women's skills, when they enter the sample (see Lundberg and Startz (1983)); this hypothesis is supported by the fact that when women enter, they are younger, have less experience, and fewer qualifications than men. The hypothesis that there is more uncertainty about women's ability is consistent with the fact that women are more likely to exit and that those who remain are more likely to get promoted and earn higher wages as more information about their ability is revealed over time. Suppose that bad performance provides a signal on an executive's ability. If firms have more uncertainty about women's ability than men, then the relationship between firm performance and the rate of exit should differ by gender. However, we do not find any differences on that score.

A more involved model of promotions and uncertainty about abilities is developed in Scotchmer (2008); it assumes no gender differences in abilities, but that men take more risk and therefore provide less accurate information on their abilities than women. In her model men are more likely than women to survive and get promoted more at early ages, and male survivors have lower average ability than females. At older ages these roles are reversed; females are promoted more, and their average ability is lower, than male survivors. For our sample we find that males are more likely to survive at lower ranks than female, however, female are promoted more quickly than males at all ranks and ages.

Another type of discrimination is suggested by Milgrom and Oster (1987). In their model abilities of executives are known to employers, but initially males are more visible to outside employers than females allowing employers to extract more rents from female executives. Promotions
enhance visibility of workers to outside employers; this increases competition for female executives, which in turn increases their compensation and reduces the employers' rents. Their model implies that female executives would face a higher threshold for promotion than their male counterparts. Further, it implies that the gender compensation gap in high ranks should be smaller than the gap in lower ranks. We find that male and female executives are paid the same conditional on rank alone. Conditional on background characteristics and job-experience female executives are paid more than their male counterparts at all ranks. Moreover, we do not find differences in external promotion rates between males and females, which might be expected if women were less visible than men.

Whatever the mix of the explanations above, we do not find any clear evidence that aggregate differences observed in the executive market between genders are driven by compensation packages and promotion opportunities available to men and women. It is still possible that discrimination explains, at least partially, the small fraction of women, compared to men who join the ranks of executive management in publicly listed firms. We are unable to address this issue because our data set comprises only of those who reach these positions, but our analysis identifies one reason for the relative scarcity of female executives. Women executive managers are more likely to exit than men, on average spending less time in those positions than male executives do.

In principle, a large longitudinal data set might be assembled to track men and women from an early age in order to distinguish by gender the contribution of background variables of those who attain the position of executive manager from those who do not. The results of our study highlight two challenges that such an approach must overcome to yield convincing results. We have established that executive managers are not drawn from an easily identified population. Because they are drawn from very diverse backgrounds, because executive managers comprise a minute portion of the general population, and because women are less than one tenth as likely to be executive managers as men, a very large sample is required to obtain meaningful results that separate by gender those who become executive managers from those who do not. A second challenge proponents of a longitudinal approach would face, stems from the fact that many executive, enter the market after a long period of acquiring education and other work experience, requiring a longitudinal study to track respondents for more than 20 consecutive years, an expensive long-term research project susceptible to choice-based attrition bias. In the meantime, we hope our results will encourage fu-
ture research on gender differences in executive management to turn away from compensation and promotion, towards the nonpecuniary characteristics of executive management jobs and options outside the marketplace.

References

Albanesi, Stefania and Claudia Olivetti. "Gender and Dynamic Agency: Theory and Evidence on the Compensation of Top Executives." Columbia University, 2008.

Albrecht, James, Anders Björklund, and Susan Vroman. "Is There a Glass Ceiling in Sweden?" Journal of Labor Economics, 2003, 21, pp. 145-177.

Antle, Rick and Abbie Smith. "Measuring Executive Compensation: Methods and an Application." Journal of Accounting Research, 1985, 23, pp. 296-325.

Antle, Rick and Abbie Smith. "An Empirical Investigation of the Relative Performance Evaluation of Corporate Executives." Journal of Accounting Research, 1986, 24, pp. 1-39.

Baker, George, Michael Gibbs, and Bengt Holmstrom. "The Internal Economics of the Firm: Evidence from Personnel Data." Quarterly Journal of Economics, November 1994a, 109(4), pp. 881-919.

Baker, George, Michael Gibbs, and Bengt Holmstrom. "The Wage Policy of a Firm." Quarterly Journal of Economics, November 1994b, 109(4), pp. 921-955.

Barmby, Tim, Sarah Bridges, John Treble, and Edwin van Gameren. "The Internal Economics of the Firm: Further Evidence from Personnel Data." Labour Economics, 2001, 8(5), pp. 531-552.

Bell, Linda A. "Women-Led Firms and the Gender Gap in Top Executive Jobs." IZA Discussion Paper 1689, July 2005.

Bertrand, Marianne, Claudia Goldin, and Lawrence F. Katz. "Dynamics of the Gender Gap for Young Professionals in the Financial and Corporate Sectors." American Economic Journal: Applied Economics, 2010, 2(3), pp. 228-255.

Bertrand, Marianne and Kevin Hallock. "The Gender Gap in Top Corporate Jobs." Industrial and Labor Relations Review, 2001, 55(1), pp. 3-21.

Black, Dan A., Amelia M. Haviland, Seth G. Sanders, and Lowell J. Taylor. "Gender Wage Disparities among the Highly Educated." Journal of Human Resources, 2008, 43(Summer), pp. 630-659.

Blau, Francine and Lawrence Kahn. "The US Gender Pay Gap in the 1990s: Slowing Convergence." NBER Working Paper 10853, 2004.

Gayle, George-Levi and Limor Golan. "Estimating a Dynamic Adverse-Selection Model: Labor-Force Experience and the Changing Gender Earnings Gap 1968-1997." Review of Economic Studies, January 2011, Forthcoming.

Gayle, George-Levi, Limor Golan, and Robert A. Miller. "Promotion, Turnover, and Compensation in the Executive Market," February 2011, Tepper School of Business, Carnegie Mellon University.

Gayle, George-Levi and Robert A. Miller. "Has Moral Hazard Become a More Important Factor in Managerial Compensation?" American Economic Review, December 2009a, 99(5), pp. 1740-1769.

Gayle, George-Levi and Robert A. Miller. "Insider Information and Performance Pay." CESifo Economic Studies, May 2009b, 55(3-4), pp. 515-541.

Ginther, Donna K. and Kathy J. Hayes. "Gender Differences in Salary and Promotion in the Humanities." American Economic Review, May, 1999, 89(2), pp. 397-402.

Ginther, Donna K. and Kathy J. Hayes. "Gender Differences in Salary and Promotion for Faculty in the Humanities 1977-95." Journal of Human Resources, Winter 2003, 38(1), pp. 34-73.

Ginther, Donna K. and Shulamit Kahn. "Women in Economics: Moving Up or Falling Off the Academic Career Ladder?" Journal of Economic Perspectives, 2004, 18(3), pp. 193-214.

Hall, Brian J. and Jeffrey B. Liebman. "Are CEOs Really Paid Like Bureaucrats?" Quarterly Journal of Economics, August 1998, 113, pp. 653-680.

Lundberg, Shelley J, and Richard Richard Startz. "Private Discrimination and Social Intervention in competitive labor Markets." American Economic Review, 1983, 73(3), pp. 340-347.

Margiotta, Mary M. and Robert A. Miller. "Managerial Compensation and the Cost of Moral Hazard." International Economic Review, August 2000, 41(3), pp. 669-719.

McDowell, John M., Larry D. Singell, Jr., and James P. Ziliak. "Cracks in the Glass Ceiling: Gender and Promotion in the Economics Profession." American Economic Review, May 1999, 89(2), pp. 392-396.

Milgrom, Paul and Sharon Oster. "Job Discrimination, Market Forces, and the Invisibility Hypothesis" Quarterly Journal of Economics, August 1987, 102(3), pp. 453-476.

Mincer, Jacob and Solomon Polachek. "Family Investments in Human Capital: Earnings of Women." Journal of Political Economy, March-April 1974, 82(2) Part II, pp. 76-108.

O'Neill, June and Solomon Polachek. "Why the Gender Gap in Wages Narrowed in the 1980s." Journal of Labor Economics, January 1993, 11, pp. 205-228.

Pekkarinen, Tuomas and Juhana Vartiainen. "Gender Differences in Job Assignment and Promotion on a Complexity Ladder of Jobs." IZA DP No 1184, 2004.

Scotchmer, Suzanne. "Risk Taking and Gender in Hierarchies." Theoretical Economics, 2008, 3(4), pp. 499-524.

Selody, Karen, "Is the Risk Worth the Reward for Female Executives?" 2010, Department of Economics, University of California, Berkeley.

Sicherman, Nachum, "Gender Differences in Departures from a Large Firm." Industrial and Labor Review, 1996, 49(3), pp. 484-505.

Wellington, Alison J. "Changes in the Male/Female Wage Gap, 1976-85." Journal of Human Resources, 1993, 28, pp. 383-411.

Notes

*For comments and suggestions, we thank Kenneth Wolpin, seminar participants at Washington and Stanford Universities, and conference attendees at the Society of Labor Economists 2007 and the 2008 World Congress on National Accounts and Economic Performance Measures for Nations. This research is supported by the Center for Organizational Learning, Innovation and Performance in Carnegie Mellon University and National Science Foundation Grant Award SES0721098.
${ }^{1}$ Mincer and Polachek (1974), O’Neill and Polachek (1993), Wellington (1993), and Gayle and Golan (2011) have shown that actual labor market experience accounts for most of the gender wage gap among ordinary workers.
${ }^{2}$ The data in Baker et al. (1994b) automatically satisfy the third axiom without further restrictions.
${ }^{3}$ We encountered a further 60 titles used fewer than three times each. These jobs were easy to rank within the hierarchy we constructed, but our analysis and conclusions are not affected by omitting the small number of observations involved either. We also experimented with finer partitions of job titles, refining job title by firm size (doubling the number of titles with an indicator designating big or small) and by sector (which triples the number of jobs). The main practical difficulty of increasing the number of job titles is the resulting small number of women in many job title cells. On the overall sample, we found that the transition patterns were not sensitive to the definitions of the partition we tested.
${ }^{4}$ Mathematically, we set $p_{t 20}^{(\mathrm{CEO}, g)}(h)=0$, leave $p_{t r 0}^{(\mathrm{CEO}, g)}(h)=p_{t r 0}^{(g)}(h)$ for all $r \neq 2$, and set $p_{t}^{(\mathrm{CEO}, g)}\left(2, h^{\prime} \mid 2, h\right)=1$, which implies $p_{t}^{(\mathrm{CEO}, g)}\left(s, h^{\prime} \mid 2, h\right)=0$ for all $s \neq 2$.

Figure 1: Hierarchy

Table 1: Titles and Ranks

Table 2: Executive Background by Gender

Table 3: Executive Background by Rank

Variables	Rank 1			Rank 2			Rank 3			Rank 4		
	Men	Women	$t(z)$									
Matched Sample												
Exit	0.35	0.39	0.45	0.14	0.19	-1.12	0.21	0.17	0.82	0.26	0.33	-2.98
Promotion	0.27	0.26	0.21	0.08	0.12	-2.36	0.20	0.23	-1.15	0.12	0.13	-1.08
Turnover	0.04	0.04	0.16	0.03	0.05	-1.74	0.03	0.04	-1.02	0.02	0.03	-0.73
No College	0.25	0.11	2.71	0.21	0.21	-0.12	0.25	0.24	0.17	0.21	0.25	-2.56
Bachelors	0.75	0.89	-2.71	0.79	0.79	0.12	0.75	0.76	-0.17	. 79	0.75	2.56
MBA	0.24	0.28	-0.83	0.26	0.25	0.57	0.23	0.22	0.20	0.25	0.32	-4.09
MS/MA	0.16	0.26	-2.43	0.17	0.14	1.48	0.17	0.22	-1.57	0.20	0.14	3.69
Ph.D.	0.15	0.29	-3.36	0.15	0.14	0.38	0.14	0.16	-0.91	0.14	0.11	2.18
Professional Certification	n 0.15	0.18	-0.68	0.14	0.05	4.15	0.15	0.10	1.87	0.22	0.18	2.58
Age	59.70	51.80	11.20	55.80	51.60	10.38	52.40	52.00	0.47	52.10	49.50	6.80
	(9.80)) (5.60)		(7.60)) (6.70)		(7.90)) (9.90)		(8.80)	(9.50)	
Exec. Exp.	22.40	13.00	8.60	20.90	18.90	2.70	18.20	14.10	3.10	15.50	13.80	3.30
	(13.30)) (8.50)		(47.40)) (10.20)		(66.00)) (9.1)		(24.00)) (11.00)	
Tenure	17.20	11.60	3.79	15.20) 13.20	2.60	13.70	11.10	2.15	13.90	12.90	2.00
	(13.60)) (10.70)		(11.70)) (11.50)		(11.40)) (10.50)		(11.10)) (11.40)	
NFC	1.95	1.46	2.77	1.91	- 2.02	-0.94	1.75	- 1.28	2.79	1.93	1.77	2.24
	(2.00)) (1.39)		(1.93)) (1.94)		(1.92)) (1.80)		(1.95)) (1.81)	
NFCBE	0.91	- 0.57	3.08	0.93) 1.18	-2.80	0.73	- 0.47	3.16	0.76	0.66	2.66
	(1.39)) (0.92)		(1.39)) (1.51)		(1.29)) (1.01)		(1.30)) (1.08)	
Salary	623	607	0.54	730	758	-0.85	552	563	-0.55	408	394	2.52
	(362)	(245)		(391)	(538)		(305)	(249)		(184)	(169)	
Compensation	$2,675$	$2,946$	-0.20	$3,795$	$2,992$	0.68	$3,729$	$2,965$	0.57	$2,321$	$2,677$	-1.33
	$(17,874)$	$(11,834)$		$(19,632)$	$(19,610)$		$(13,791)$	$(16,685)$		$(8,130)$	$(8,514)$	
N	4,293	75		17,953	286		5,201	148		13,997	799	
	Full Sample											
Exit	0.35	0.35	0.00	0.16	0.24	-1.86	0.23	0.18	0.84	0.27	0.34	-3.38
Promotion	0.27	0.26	0.22	0.08	0.12	-2.39	0.20	0.23	-1.17	0.12	0.13	-0.98
Tornover	0.04	0.04	0.03	0.03	0.05	-1.44	0.03	0.04	-1.05	0.02	0.02	0.49
Salary	613	596	0.62	707	715	-0.31	535	547	-0.67	395		2.48
	(362)	(265)		(404)	(506)		(316)	(248)		(183)	(170)	
Compensation	2,590	3,355	-0.86	3,849	3,532	0.33	3,464	3,808	-0.40	2,107	2,238	-0.60
	$(16,726)$	$(8,633)$		$(18,385)$	$(7,909)$		$(13,168)$	$(11,830)$		$(7,897)$	$(8,192)$	
N	5,900	100		24,573	371		7,903	209		25,705	1,472	

 from the Marquis Who's Who database.
Note: Standard deviations in parenthesis. Salary and compensation measured in thousands of 2006 US $\$$. NFCBE is an executive's number of firm changes before becominng an executive. NFC is the total number of firm changes. Exec. Exp. measures years of executive experience. ${ }^{\text {a }}$ Statistic for the difference in sample means and proportions between men and women within each row: distributed t for a mean and z for a proportion. Executives who leave all our data sets and do not return for four years are classified as exited.
Table 3: Executive Background by Rank (cont'd)

Variables	Rank 5			Rank 6			Rank 7		
	Men	Women	$t(z)$	Men	Women	$t(z)$	Men	Women	$t(z)$
	Matched Sample								
Exit	0.30	0.37	-2.86	0.30	0.35	-2.65	0.30	0.41	-2.84
Promotion	0.07	0.07	-0.24	0.03	0.03	0.38			
Turnover	0.03	0.01	1.28	0.01	0.01	1.02	0.02	0.02	-0.18
No College	0.21	0.26	-3.34	0.17	0.18	-0.46	0.21	0.18	1.02
Bachelors	0.79	0.74	3.34	0.83	0.82	0.46	0.79	0.82	-1.02
MBA	0.19	0.19	0.00	0.18	0.16	1.61	0.22	0.22	0.06
MS/MA	0.21	0.18	1.91	0.21	0.19	0.74	0.21	0.14	2.24
Ph.D.	0.21	0.24	-1.44	0.27	0.34	-4.31	0.17	0.19	-0.53
Professional Certification	0.25	0.24	0.60	0.34	0.38	-2.15	0.29	0.37	-2.13
Age	52.90	51.30	3.81	52.40	51.30	2.50	52.20	52.00	0.17
	(10.00)	(10.40)		(10.30)	(10.80)		(11.10)) (13.60)	
Exec. Exp.	18.90	15.50	3.90	17.30	14.70	4.52	16.70	15.30	1.25
	(66.60)	(12.50)		(29.60)	(11.40)		(11.70)	(13.0)	
Tenure	14.10	12.20	4.09	13.80	12.40	2.91	14.20	12.90	1.51
	(11.30)	(10.30)		(11.00)	(10.50)		(10.90)) (10.30)	
NFC	2.23	2.01	2.64	2.31	2.20	1.31	2.31	2.45	-0.82
	(2.06)	(2.31)		(2.05)	(1.91)		(2.18)) (2.14)	
NFCBE	0.78	0.82	-0.92	0.80	0.75	1.18	0.84	0.90	-0.60
	(1.33)	(0.80)		(1.32)	(1.24)		(1.43)	(1.39)	
Salary	$\begin{array}{r} 379 \\ (175) \end{array}$		-0.24	302	276	7.39	320	281	5.35
	(175) 1.979	$\begin{gathered} (302) \\ 2.282 \end{gathered}$		(130) 1,402	$\begin{aligned} & (114) \\ & 1.347 \end{aligned}$		(1878)	$\begin{aligned} & (131) \\ & 1.461 \end{aligned}$	
Compensation	1,979 $(6,717)$	$\begin{gathered} 2,282 \\ (6,415) \end{gathered}$	-1.46	$\begin{gathered} 1,402 \\ (5,454) \end{gathered}$	$\begin{gathered} 1,347 \\ (4,060) \end{gathered}$	0.43	$\begin{gathered} 1,678 \\ (6,298) \end{gathered}$	$\begin{gathered} 1,461 \\ (4,574) \end{gathered}$	0.85
N	10,976	(706		9,801	662		3,702	186	
	Full Sample								
Exit	0.31	0.37	-2.88	0.31	0.37	-3.53	0.31	0.40	-2.63
Promotion	0.07	0.07	-0.42	0.03	0.03	0.35			
Turnover	0.02	0.01	1.03	0.01	0.01	0.98	0.02	0.02	-0.15
Salary	369	370	-0.16	294	270	7.83	309	277	5.17
	(175)	(184)		(134)	(114)		(186)	(134)	
Compensation	1,866	2,008	-0.80	1,279	1,289	-0.08	1,489	1,122	1.60
	$(6,739)$ 22,407	$(6,352)$ 1,386		$(5,144)$ 20,238	$(4,750)$ 1,495		$(6,533)$ 7,984	$(4,930)$	
N	22,407	1,386		20,238	1,495		7,984	513	

Sources: The data are for top managers from the Standard and Poor's ExecuComp database for 1991 through 2006 matched with background data from the Marquis Who's Who database.
Note: Standard deviations in parenthesis. Salary and compensation measured in thousands of 2006 US $\$$. NFCBE is an executive's number of firm changes before becominng an executive. NFC is the total number of firm changes. Exec. Exp. measures years of executive experience. ${ }^{\text {a }}$ Statistic for the difference in sample means and proportions between men and women within each row: distributed t for a mean and z for a proportion. Executives who leave all our data sets and do not return for four years are classified as exited.

Table 4A: Median Regression Estimates of the Effect of Gender on Total Compensation. Dependent Variable: Yearly Total Compensation, 1992-2006.

	(1)	(2)	(3)	(4)	(5)	(6)
Female -	-111.08	41.09	91.73	266.52	-1.45	95.89
	(60.77)	(42.56)	(45.91)	(133.50)	(147.66)	(67.80)
Negative Ab. Return dummy \times Female					308.96	131.29
					(130.89)	(103.00)
Ab. Return \times Female		-253.24	-286.29	-327.35	489.53	312.85
		(69.20)	(75.04)	(82.65)	(114.88)	(82.70)
Ab. Return \times Negative Ab. Return dummy \times Female					-475.17	-547.87
					(279.99)	(214.59)
No College \times Female				256.32	119.65	
				(143.80)	(135.75)	
MBA \times Female				-291.93	-249.66	
				(132.23)	(125.12)	
MS/MA \times Female				87.84	85.58	
				(136.01)	(127.89)	
Ph.D. \times Female				83.14	42.22	
				(134.73)	(127.44)	
Professional Certification \times Female				-192.72	-130.18	
				(124.86)	(118.20)	
Exec. Exp. \times Female				-7.92	-10.33	
				(7.49)	(7.06)	
Tenure \times Female				0.93	5.75	
				(8.09)	(7.62)	
NFC \times Female				-14.35	-26.85	
				(36.21)	(34.05)	
NFCBE \times Female				60.71	84.34	
				(62.72)	(59.15)	
Experience variables	no	no	yes	yes	yes	no
Rank dummiesAb. Return	no	yes	yes	yes	yes	yes
	no	yes	yes	yes	yes	yes
Ab. Return-Rank interactions	no	yes	yes	yes	yes	yes
Negative Ab. Return dummy	no	no	no	no	yes	yes
Ab. Return \times Negative Ab. Return dummy Education variables	no	no	no	no	yes	yes
	no	no	yes	yes	yes	no
Exp.-Gender interactions	no	no	no	yes	yes	no
Educ.-Gender interactions	no	no	no	yes	yes	no
Return-Exp. interactions	no	no	yes	yes	yes	no
Return-Educ. interactions	no	no	yes	yes	yes	no
Firm-Level variables	no	yes	yes	yes	yes	yes
Return-Firm interactions	no	yes	yes	yes	yes	yes
N	58,110	48,065	35,893	35,893	35,893	48,065
R^{2}	0.01	0.24	0.25	0.26	0.26	0.24

Sources: Data are from S\&P ExecuComp, COMPUSTAT, and Marquis Who's Who databases.
Note: Standard errors in parentheses. Compensation is measured in thousands of 2006 US $\$$. We apply a 1% trim for outliers. The "Negative Ab. Return dummy" equals 1 if the abnormal return is less than zero and 0 otherwise. Abnormal (Ab.) return is measured as a fraction between -1 and 1 . Columns (2)-(5) include age, age squared, and age interacted with abnormal return. Education variables are No College, MBA, MS/MA, Ph.D., and Professional Certification. Firm-level variables are sector, assets, and number of employees. Experience variables are turnover, managerial experience (Exec. Exp.), tenure, firm changes before becoming an executive (NFCBE), and total number of firm changes (NFC). Column (2) has fewer observations because it excludes firms whose stock prices are not available for two consecutive periods. Columns (3)-(5) have even fewer observations because they also exclude executives who are not observed for two consecutive periods.

Table 4B: Median Regression Estimates of the Effect of Gender on Salary. Dependent Variable: Yearly Salary, 1992-2006.

	(1)	(2)	(3)	(4)	(5)
Female	$\begin{gathered} \hline-77.69 \\ (6.23) \end{gathered}$	$\begin{array}{r} \hline-10.80 \\ (4.35) \end{array}$	$\begin{gathered} \hline-10.69 \\ (4.68) \end{gathered}$	$\begin{gathered} \hline 20.29 \\ (12.56) \end{gathered}$	$\begin{gathered} 12.15 \\ \hline(14.44) \end{gathered}$
Negative Ab. Return dummy \times Female					$\begin{gathered} -3.54 \\ (12.75) \end{gathered}$
Ab . Return \times Negative Ab . Return dummy \times Female					$\begin{gathered} -13.44 \\ (26.60) \end{gathered}$
Ab. Return \times Female		$\begin{gathered} 6.24 \\ (6.48) \end{gathered}$	$\begin{gathered} 9.13 \\ (6.99) \end{gathered}$	$\begin{gathered} 6.70 \\ (6.89) \end{gathered}$	$\begin{array}{r} -2.23 \\ (8.71) \end{array}$
No College \times Female				53.77	62.50
MBA \times Female				-29.19	-30.60
MS/MA \times Female				(12.03) -0.75	(12.39) 2.88
				(12.42)	(12.72)
Ph.D. \times Female				22.51	26.67
Professional Certification \times Female				(12.360) -22.864	(12.67) -24.14
				(11.45)	(11.73)
Exec. Exp. \times Female				-1.18	-0.65
				(0.69)	(0.70)
Tenure \times Female				$\begin{array}{r} -0.47 \\ (0.74) \end{array}$	$\begin{array}{r} -0.85 \\ (0.75) \end{array}$
NFC \times Female				-4.20	-2.72
				(3.32)	(3.41)
NFCBE \times Female				6.47	2.39
				(5.71)	(5.86)
Experience variables	no	no	yes	yes	yes
Rank dummies	no	yes	yes	yes	yes
Ab. Return	no	yes	yes	yes	yes
Ab. Return-Rank interactions	no	yes	yes	yes	yes
Negative Ab. Return dummy	no	no	no	no	yes
Ab . Return \times Negative Ab . Return dummy	no	no	no	no	yes
Education variables	no	no	yes	yes	yes
Exp.-Gender interactions	no	no	no	yes	yes
Educ.-Gender interactions	no	no	no	yes	yes
Return-Exp. interactions	no	no	yes	yes	yes
Return-Educ. interactions	no	no	yes	yes	yes
Firm-Level variables	no	yes	yes	yes	yes
Return-Firm interactions	no	yes	yes	yes	yes
${ }_{N}$	59,256	49,112	36,625	36,625	36,625
R^{2}	0.003	0.37	0.37	0.39	0.39

Sources: Data are from S\&P ExecuComp, COMPUSTAT, and Marquis Who's Who databases. Note: Standard errors in parentheses. Salary is measured in thousands of 2006 US\$. We apply a 1% trim for outliers. The "Negative Ab. Return dummy" equals 1 if abnormal return is less than zero and 0 otherwise. Abnormal (Ab.) return is measured as a fraction between -1 and 1 . Columns (2)-(5) include age, age squared, and age interacted with abnormal return. Education variables are No College, MBA, MS/MA, Ph.D., and Professional Certification. Firm-level variables are sector, assets, and number of employees. Experience variables are turnover, managerial experience (Exec. Exp.), tenure, firm changes before becoming an executive (NFCBE), and total number of firm changes (NFC). Column (2) has fewer observations because it excludes firms whose stock prices are not available for two consecutive periods. Columns (3)-(5) have even fewer observations because they also exclude executives who are not observed for two consecutive periods.

Table 5: Transition Probability Matrices for Internal Moves (percent from base rank)

Panel A: Male									
	Rank 1	Rank 2	Rank 3	Rank 4	Rank 5	Rank 6	Rank 7	N	
Rank 1	88.70	4.77	3.24	1.46	1.10	0.34	0.39	3,833	100.00
Rank 2	3.41	96.09	0.24	0.15	0.06	0.01	0.04	19,598	100.00
Rank 3	2.88	13.40	78.87	2.47	1.36	0.56	0.46	6,043	100.00
Rank 4	1.01	2.18	3.26	86.74	4.06	1.65	1.09	18,635	100.00
Rank 5	0.99	0.88	2.36	7.20	85.11	2.28	1.18	15,396	100.00
Rank 6	0.16	0.44	0.91	6.28	6.29	83.96	1.97	14,342	100.00
Rank 7	0.24	0.57	1.48	6.14	3.62	6.90	81.06	5,476	100.00
N	4,621	20,461	6,119	18,743	15,095	13,127	5,157	83,323	
Panel B: Female									
	Rank 1	Rank 2	Rank 3	Rank 4	Rank 5	Rank 6	Rank 7	N	
Rank 1	81.82	6.06	6.06	1.52	0.00	0.00	4.55	66	100.00
Rank 2	0.75	98.51	0.00	0.00	0.37	0.00	0.37	268	100.00
Rank 3	2.60	9.74	79.22	3.90	1.95	2.60	0.00	154	100.00
Rank 4	0.72	0.82	2.46	87.06	5.75	1.95	1.23	974	100.00
Rank 5	0.35	0.69	1.27	8.99	85.02	2.07	1.61	868	100.00
Rank 6	0.00	0.21	0.31	4.15	6.01	87.15	2.18	965	100.00
Rank 7	0.00	0.65	0.00	6.17	2.92	8.12	82.14	308	100.00
N	70	301	164	992	865	907	304	3,603	

Table 6: Incidence of Turnover between Firms (percent from base rank)

Panel A: Male									
	Rank 1	Rank 2	Rank 3	Rank 4	Rank 5	Rank 6	Rank 7	N	
Rank 1	48.56	34.16	8.23	7.00	2.06	0.00	0.00	243	100.00
Rank 2	17.84	57.12	10.63	6.31	6.67	1.08	0.36	555	100.00
Rank 3	8.23	40.33	22.22	14.81	10.70	1.23	2.47	243	100.00
Rank 4	2.46	20.33	6.39	38.36	13.93	11.80	6.72	610	100.00
Rank 5	2.10	28.74	9.11	18.69	31.07	7.01	3.27	428	100.00
Rank 6	0.28	9.44	5.00	28.89	12.78	33.89	9.72	360	100.00
Rank 7	0.64	11.46	5.73	28.66	10.83	21.66	21.02	157	100.00
N	263	797	238	551	349	267	131	2,596	
Panel B: Female									
	Rank 1	Rank 2	Rank 3	Rank 4	Rank 5	Rank 6	Rank 7	N	
Rank 1	0.00	50.00	0.00	50.00	0.00	0.00	0.00	2	100.00
Rank 2	0.00	92.86	0.00	0.00	7.14	0.00	0.00	14	100.00
Rank 3	0.00	25.00	0.00	75.00	0.00	0.00	0.00	4	100.00
Rank 4	5.71	5.71	2.86	45.71	17.14	11.43	11.43	35	100.00
Rank 5	7.14	10.71	17.86	25.00	21.43	10.71	7.14	28	100.00
Rank 6	0.00	0.00	5.56	38.89	11.11	33.33	11.11	18	100.00
Rank 7	0.00	0.00	16.67	33.33	0.00	33.33	16.67	6	100.00
N	4	20	8	36	15	15	9	107	

Table 7: Chi-Squared Contingent Table Test of Gender Differences in Transition

	(1) Internal	(2) External
Panel A: Full Transition Matrix		
Test Statistics	877.79	66.53
Degrees of Freedom ${ }^{\text {a }}$	48	46
5% Critical Value	65.17	62.83
P-Value	0.000	0.025
Panel B: Normalized Transition Matrix		
Test Statistics	129.86	55.46
Degrees of Freedom	41	39
5% Critical Value	56.94	54.57
P-Value	0.000	0.042
Panel C: Transition Matrix Excluding Rank		
Test Statistics	744.34	40.18
Degrees of Freedom	35	35
5% Critical Value	49.80	49.80
P-Value	0.000	0.251
aThe		

${ }^{\text {a }}$ The degrees of freedom for the chi-squared test is number of rows minus one multiplied by the number of columns minus one. We lost two degrees of freedom when using the full or normalized external transitions because there is no observed external transitions from Rank 1 to Rank 6 or 7 for both men and women. ${ }^{\text {b }}$ The normalized transition test excludes all same-rank transitions from consideration. This in effect normalized for the number of men and women in each rank and hence focuses on the executives who changed ranks.
Table 8: Multinominal Logit Coefficient Estimates of Effect of Gender on the One-Period Internal and External Transitions

Variables	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
	Internal Rank							External Rank						
	1	2	3	4	5	6	7	1	2	3	4	5	6	7
Constant	$\begin{gathered} -7.8 \\ (1.4) \end{gathered}$	$\begin{gathered} 0.0 \\ (0.0) \end{gathered}$	$\begin{gathered} -2.8 \\ (1.4) \end{gathered}$	$\begin{gathered} -2.8 \\ (1.3) \end{gathered}$	$\begin{gathered} -2.3 \\ (1.4) \end{gathered}$	$\begin{gathered} -5.2 \\ (1.7) \end{gathered}$	$\begin{gathered} -3.1 \\ (1.7) \end{gathered}$	$\begin{array}{r} -24.6 \\ (6.4) \end{array}$	$\begin{array}{r} -2.3 \\ (1.9) \end{array}$	$\begin{gathered} -3.3 \\ (4.0) \end{gathered}$	$\begin{gathered} -5.5 \\ (2.6) \end{gathered}$	$\begin{array}{r} -13.7 \\ (6.2) \end{array}$	$\begin{array}{r} -12.1 \\ (4.3) \end{array}$	$\begin{array}{r} -13.9 \\ (7.7) \end{array}$
Rank 1	$\begin{gathered} 6.0 \\ (0.1) \end{gathered}$	$\begin{gathered} 0.0 \\ (0.0) \end{gathered}$	$\begin{gathered} 5.3 \\ (0.3) \end{gathered}$	$\begin{gathered} 4.9 \\ (0.5) \end{gathered}$	$\begin{gathered} 4.2 \\ (0.5) \end{gathered}$	$\begin{gathered} 6.1 \\ (1.1) \end{gathered}$	$\begin{gathered} 3.3 \\ (1.1) \end{gathered}$	$\begin{gathered} 5.2 \\ (0.3) \end{gathered}$	$\begin{gathered} 2.9 \\ (0.2) \end{gathered}$	$\begin{gathered} 3.6 \\ (0.5) \end{gathered}$	$\begin{gathered} 4.5 \\ (0.6) \end{gathered}$	$\begin{array}{r} -6.1 \\ (0.3) \end{array}$	$\begin{gathered} -7.6 \\ (0.6) \end{gathered}$	$\begin{array}{r} -5.5 \\ (1.0) \end{array}$
Rank 3	$\begin{gathered} 1.9 \\ (0.2) \end{gathered}$	$\begin{gathered} 0.0 \\ (0.0) \end{gathered}$	$\begin{gathered} 7.6 \\ (0.2) \end{gathered}$	$\begin{gathered} 4.8 \\ (0.4) \end{gathered}$	$\begin{gathered} 4.0 \\ (0.4) \end{gathered}$	$\begin{gathered} 5.8 \\ (1.1) \end{gathered}$	$\begin{gathered} 4.5 \\ (0.6) \end{gathered}$	$\begin{gathered} 1.7 \\ (0.5) \end{gathered}$	$\begin{gathered} 1.8 \\ (0.2) \end{gathered}$	$\begin{gathered} 3.4 \\ (0.3) \end{gathered}$	$\begin{gathered} 3.6 \\ (0.5) \end{gathered}$	$\begin{gathered} 3.0 \\ (0.5) \end{gathered}$	$\begin{gathered} 2.1 \\ (1.2) \end{gathered}$	$\begin{array}{r} -8.9 \\ (1.0) \end{array}$
Rank 4	$\begin{gathered} 2.6 \\ (0.2) \end{gathered}$	$\begin{gathered} 0.0 \\ (0.0) \end{gathered}$	$\begin{gathered} 6.2 \\ (0.2) \end{gathered}$	$\begin{aligned} & 10.2 \\ & (0.4) \end{aligned}$	$\begin{gathered} 7.1 \\ (0.3) \end{gathered}$	$\begin{gathered} 8.4 \\ (1.0) \end{gathered}$	$\begin{gathered} 6.7 \\ (0.5) \end{gathered}$	$\begin{gathered} 1.0 \\ (1.0) \end{gathered}$	$\begin{gathered} 2.3 \\ (0.2) \end{gathered}$	$\begin{gathered} 3.6 \\ (0.4) \end{gathered}$	$\begin{gathered} 6.3 \\ (0.4) \end{gathered}$	$\begin{gathered} 4.2 \\ (0.4) \end{gathered}$	$\begin{gathered} 6.1 \\ (0.6) \end{gathered}$	$\begin{gathered} 6.1 \\ (1.1) \end{gathered}$
Rank 5	$\begin{gathered} 3.4 \\ (0.2) \end{gathered}$	$\begin{gathered} 0.0 \\ (0.0) \end{gathered}$	$\begin{gathered} 6.9 \\ (0.3) \end{gathered}$	$\begin{gathered} 8.7 \\ (0.4) \end{gathered}$	$\begin{aligned} & 11.1 \\ & (0.4) \end{aligned}$	$\begin{gathered} 9.9 \\ (1.0) \end{gathered}$	$\begin{gathered} 7.7 \\ (0.6) \end{gathered}$	$\begin{gathered} 2.2 \\ (1.0) \end{gathered}$	$\begin{gathered} 3.7 \\ (0.2) \end{gathered}$	$\begin{gathered} 4.4 \\ (0.4) \end{gathered}$	$\begin{gathered} 5.8 \\ (0.5) \end{gathered}$	$\begin{gathered} 6.1 \\ (0.4) \end{gathered}$	$\begin{gathered} 6.0 \\ (0.7) \end{gathered}$	$\begin{gathered} 5.8 \\ (1.3) \end{gathered}$
Rank 6	$\begin{gathered} 2.4 \\ (0.5) \end{gathered}$	$\begin{gathered} 0.0 \\ (0.0) \end{gathered}$	$\begin{gathered} 6.7 \\ (0.4) \end{gathered}$	$\begin{gathered} 9.4 \\ (0.4) \end{gathered}$	$\begin{gathered} 9.2 \\ (0.4) \end{gathered}$	$\begin{aligned} & 14.2 \\ & (1.0) \end{aligned}$	$\begin{gathered} 8.9 \\ (0.6) \end{gathered}$	$\begin{gathered} 3.1 \\ (1.0) \end{gathered}$	$\begin{gathered} 3.3 \\ (0.4) \end{gathered}$	$\begin{gathered} 4.3 \\ (0.6) \end{gathered}$	$\begin{gathered} 7.6 \\ (0.5) \end{gathered}$	$\begin{gathered} 6.0 \\ (0.5) \end{gathered}$	$\begin{gathered} 8.2 \\ (0.7) \end{gathered}$	$\begin{gathered} 7.9 \\ (1.1) \end{gathered}$
Rank 7	$\begin{gathered} 2.6 \\ (0.7) \end{gathered}$	$\begin{gathered} 0.0 \\ (0.0) \end{gathered}$	$\begin{gathered} 6.5 \\ (0.5) \end{gathered}$	$\begin{gathered} 8.9 \\ (0.5) \end{gathered}$	$\begin{gathered} 8.4 \\ (0.5) \end{gathered}$	$\begin{aligned} & 11.1 \\ & (1.1) \end{aligned}$	$\begin{aligned} & 12.4 \\ & (0.6) \end{aligned}$	$\begin{array}{r} -6.3 \\ (0.4) \end{array}$	$\begin{gathered} 2.4 \\ (0.8) \end{gathered}$	$\begin{gathered} 4.6 \\ (0.7) \end{gathered}$	$\begin{gathered} 7.4 \\ (0.6) \end{gathered}$	$\begin{gathered} 4.2 \\ (1.1) \end{gathered}$	$\begin{gathered} 7.6 \\ (0.8) \end{gathered}$	$\begin{gathered} 8.5 \\ (1.2) \end{gathered}$
Rank $1 \times$ Female	$\begin{array}{r} -0.1 \\ (1.1) \end{array}$	$\begin{gathered} 0.0 \\ (0.0) \end{gathered}$	$\begin{gathered} -7.5 \\ (1.0) \end{gathered}$	$\begin{gathered} 2.3 \\ (1.4) \end{gathered}$	$\begin{array}{r} -5.6 \\ (1.1) \end{array}$	$\begin{array}{r} -5.3 \\ (1.2) \end{array}$	$\begin{gathered} 5.1 \\ (1.8) \end{gathered}$	$\begin{array}{r} -7.3 \\ (1.0) \end{array}$	$\begin{gathered} -7.6 \\ (1.0) \end{gathered}$	$\begin{array}{r} -6.4 \\ (1.1) \end{array}$	$\begin{gathered} -6.1 \\ (1.1) \end{gathered}$	$\begin{array}{r} -0.3 \\ (1.0) \end{array}$	$\begin{gathered} 0.1 \\ (1.0) \end{gathered}$	$\begin{array}{r} -0.2 \\ (1.1) \end{array}$
Rank $2 \times$ Female	$\begin{gathered} -1.2 \\ (1.0) \end{gathered}$	$\begin{gathered} 0.0 \\ (0.0) \end{gathered}$	$\begin{gathered} -7.1 \\ (0.2) \end{gathered}$	$\begin{gathered} 2.2 \\ (1.1) \end{gathered}$	$\begin{gathered} 2.0 \\ (1.1) \end{gathered}$	$\begin{gathered} -4.8 \\ (1.0) \end{gathered}$	$\begin{array}{r} -5.3 \\ (0.5) \end{array}$	$\begin{gathered} -7.9 \\ (0.3) \end{gathered}$	$\begin{gathered} 1.4 \\ (0.4) \end{gathered}$	$\begin{gathered} -6.9 \\ (0.3) \end{gathered}$	$\begin{gathered} -5.1 \\ (0.4) \end{gathered}$	$\begin{array}{r} -6.3 \\ (0.4) \end{array}$	$\begin{gathered} -6.3 \\ (0.6) \end{gathered}$	$\begin{gathered} -5.1 \\ (1.1) \end{gathered}$
Rank $3 \times$ Female	$\begin{gathered} 0.9 \\ (1.2) \end{gathered}$	$\begin{gathered} 0.0 \\ (0.0) \end{gathered}$	$\begin{gathered} 0.7 \\ (0.6) \end{gathered}$	$\begin{gathered} 1.9 \\ (0.9) \end{gathered}$	$\begin{gathered} 2.0 \\ (1.2) \end{gathered}$	$\begin{gathered} 2.5 \\ (1.2) \end{gathered}$	$\begin{gathered} -6.1 \\ (0.7) \end{gathered}$	$\begin{gathered} -5.2 \\ (0.8) \end{gathered}$	$\begin{gathered} 1.1 \\ (1.2) \end{gathered}$	$\begin{gathered} -7.0 \\ (0.6) \end{gathered}$	$\begin{gathered} -5.9 \\ (0.7) \end{gathered}$	$\begin{gathered} -6.4 \\ (0.7) \end{gathered}$	$\begin{gathered} -4.1 \\ (1.2) \end{gathered}$	$\begin{gathered} -0.1 \\ (0.6) \end{gathered}$
Rank $4 \times$ Female	$\begin{gathered} 0.8 \\ (0.9) \end{gathered}$	$\begin{gathered} 0.0 \\ (0.0) \end{gathered}$	$\begin{gathered} -0.0 \\ (0.8) \end{gathered}$	$\begin{gathered} 0.8 \\ (0.6) \end{gathered}$	$\begin{gathered} 1.0 \\ (0.7) \end{gathered}$	$\begin{gathered} 1.6 \\ (0.7) \end{gathered}$	$\begin{gathered} 1.2 \\ (0.8) \end{gathered}$	$\begin{array}{r} -4.6 \\ (1.2) \end{array}$	$\begin{gathered} 0.5 \\ (1.2) \end{gathered}$	$\begin{gathered} -7.1 \\ (0.6) \end{gathered}$	$\begin{gathered} 1.5 \\ (0.7) \end{gathered}$	$\begin{gathered} -7.4 \\ (0.6) \end{gathered}$	$\begin{gathered} 0.6 \\ (1.2) \end{gathered}$	$\begin{gathered} 1.6 \\ (1.2) \end{gathered}$
Rank $5 \times$ Female	$\begin{array}{r} -9.2 \\ (0.7) \end{array}$	$\begin{gathered} 0.0 \\ (0.0) \end{gathered}$	$\begin{array}{r} -1.7 \\ (1.2) \end{array}$	$\begin{gathered} 0.5 \\ (0.8) \end{gathered}$	$\begin{gathered} 0.2 \\ (0.7) \end{gathered}$	$\begin{gathered} 0.1 \\ (0.9) \end{gathered}$	$\begin{gathered} 1.0 \\ (0.9) \end{gathered}$	$\begin{gathered} 3.0 \\ (1.6) \end{gathered}$	$\begin{gathered} 0.2 \\ (1.0) \end{gathered}$	$\begin{gathered} -7.5 \\ (0.8) \end{gathered}$	$\begin{gathered} -7.6 \\ (0.8) \end{gathered}$	$\begin{gathered} 0.4 \\ (1.0) \end{gathered}$	$\begin{gathered} 1.1 \\ (1.3) \end{gathered}$	$\begin{gathered} -6.4 \\ (1.0) \end{gathered}$
Rank $6 \times$ Female	$\begin{gathered} -7.9 \\ (0.9) \end{gathered}$	$\begin{gathered} 0.0 \\ (0.0) \end{gathered}$	$\begin{array}{r} -9.7 \\ (0.8) \end{array}$	$\begin{gathered} -1.6 \\ (0.9) \end{gathered}$	$\begin{gathered} -0.3 \\ (0.8) \end{gathered}$	$\begin{gathered} -0.6 \\ (0.7) \end{gathered}$	$\begin{gathered} 0.1 \\ (0.8) \end{gathered}$	$\begin{gathered} -5.7 \\ (1.3) \end{gathered}$	$\begin{gathered} -8.6 \\ (0.8) \end{gathered}$	$\begin{gathered} 0.8 \\ (1.4) \end{gathered}$	$\begin{gathered} -9.0 \\ (0.8) \end{gathered}$	$\begin{gathered} -0.1 \\ (1.3) \end{gathered}$	$\begin{gathered} -1.3 \\ (1.3) \end{gathered}$	$\begin{gathered} -7.7 \\ (0.8) \end{gathered}$
Rank $7 \times$ Female	$\begin{array}{r} -1.3 \\ (0.8) \end{array}$	$\begin{gathered} 0.0 \\ (0.0) \end{gathered}$	$\begin{gathered} -2.9 \\ (0.7) \end{gathered}$	$\begin{gathered} 6.6 \\ (0.9) \end{gathered}$	$\begin{gathered} 6.3 \\ (1.1) \end{gathered}$	$\begin{gathered} 6.0 \\ (1.2) \end{gathered}$	$\begin{gathered} 7.2 \\ (0.7) \end{gathered}$	$\begin{gathered} 0.2 \\ (0.7) \end{gathered}$	$\begin{array}{r} -1.9 \\ (1.0) \end{array}$	$\begin{gathered} -1.4 \\ (0.9) \end{gathered}$	$\begin{gathered} -1.8 \\ (0.7) \end{gathered}$	$\begin{gathered} -0.3 \\ (1.2) \end{gathered}$	$\begin{array}{r} -1.3 \\ (0.7) \end{array}$	$\begin{gathered} -1.2 \\ (0.8) \end{gathered}$
N	25,314	25,314	25,314	25,314	25,314	25,314	25,314	25,314	25,314	25,314	25,314	25,314	25,314	25,314

Table 9: Binary Logit Coefficient Estimates of the Effect of Gender on Promotion, Demotion, and Turnover

Variables	Pomotion ${ }^{\text {a }}$			Demotion ${ }^{\text {b }}$			Turnover ${ }^{\text {c }}$		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Constant	2.603	2.474	2.725	-2.343	-2.418	-2.253	-5.928	-5.827	-6.65
	(0.232)	(0.238)	(0.288)	(0.643)	(0.661)	(0.843)	(0.861)	(0.866)	(1.163)
Female	0.139	3.287	3.131	0.332	1.858	2.031	-12.405	-29.657	-21.912
	(0.204)	(1.178)	(1.432)	(0.426)	(3.023)	(3.355)	(40.810)	(42.723)	(86.321)
Rank 1				2.176	2.179	2.254	1.037	1.031	0.872
				(0.133)	(0.134)	(0.162)	(0.172)	(0.172)	(0.203)
Rank 2 -	-1.122	-1.124	-1.130	-0.592	-0.592	-0.527	-0.018	-0.019	-0.105
	(0.043)	(0.043)	(0.050)	(0.151)	(0.151)	(0.182)	(0.156)	(0.156)	(0.182)
Rank 3 -	-0.122	-0.124	-0.159	1.051	1.050	1.131	0.273	0.274	0.270
	(0.051)	(0.051)	(0.061)	(0.142)	(0.142)	(0.171)	(0.174)	(0.174)	(0.202)
Rank 4	-0.217	-0.218	-0.230	1.535	1.534	1.620	0.216	0.217	0.125
	(0.042)	(0.042)	(0.049)	(0.117)	(0.117)	(0.140)	(0.158)	(0.158)	(0.185)
Rank 5	0.087	0.087	0.089	0.865	0.864	0.945	-0.013	-0.012	-0.098
	(0.042)	(0.042)	(0.049)	(0.132)	(0.132)	(0.157)	(0.166)	(0.166)	(0.195)
Rank 6	0.033	0.033	-0.005				-0.095	-0.095	-0.113
	(0.044)	(0.044)	(0.051)				(0.170)	(0.170)	(0.197)
Rank $1 \times$ Female				0.490	0.550	0.832	11.700	11.523	
				(0.679)	(0.687)	(0.845)	(40.821)	(42.712)	
Rank $2 \times$ Female	0.005	0.086	0.139	-0.707	-0.654	-0.536	13.058	12.855	14.151
	(0.283)	(0.287)	(0.326)	(1.105)	(1.109)	(1.135)	(40.801)	(42.720)	(86.300)
Rank $3 \times$ Female	-0.242	-0.183	0.080	0.297	0.319	0.664			
	(0.313)	(0.315)	(0.402)	(0.636)	(0.639)	(0.723)			
Rank $4 \times$ Female	0.098	0.131	0.082	0.177	0.210	-0.021	12.710	12.583	14.112
	(0.233)	(0.236)	(0.269)	(0.475)	(0.478)	(0.502)	(40.821)	(42.7)	(86.331)
Rank $5 \times$ Female	-0.088	-0.052	0.054	-0.326	-0.312	-0.301	12.956	12.843	13.941
	(0.235)	(0.237)	(0.271)	(0.557)	(0.557)	(0.597)	(40.800)	(42.700)	(86.300)
Rank $6 \times$ Female	-0.267	-0.231	-0.259				11.806	11.756	13.387
	(0.237)	(0.239)	(0.272)				(40.801)	(42.7)	(86.308)
External	2.064	2.063	1.986	2.138	2.138	2.091			
	(0.069)	(0.069)	(0.081)	(0.107)	(0.107)	(0.130)			
External \times Female	-0.331	-0.283	-0.744	-0.149	-0.115	-1.021			
	(0.370)	(0.372)	(0.420)	(0.562)	(0.564)	(0.851)			
Age	-0.098	-0.093	-0.101	-0.054	-0.051	-0.058	0.098	0.093	0.132
	(0.008)	(0.008)	(0.010)	(0.023)	(0.023)	(0.029)	(0.031)	(0.031)	(0.042)
Age Sq.	0.001	0.001	0.001	0.000	0.000	0.000	-0.001	-0.001	-0.001
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Age \times Female		-0.113	-0.123		-0.063	-0.072		0.722	0.335
		(0.041)	(0.050)		(0.105)	(0.118)		(0.505)	(0.447)
Age Sq. \times Female		0.001	0.001		0.001	0.001		-0.007	-0.004
		(0.000)	(0.000)		(0.001)	(0.001)		(0.005)	(0.004)
Experience variables	no	no	yes	no	no	yes	no	no	yes
Experience-Gender interactionEducation variables	n no	no	yes	no	no	yes	no	no	yes
	no	no	yes	no	no	yes	no	no	yes
Education-Gender interactions	ns no	no	yes	no	no	yes	no	no	yes
N	40,840	40,840	30,343	33,564	33,564	24,883	34,705	34,705	25,732

Note: Standard errors in parentheses. ${ }^{a}$ The promotion variable is a binary variable equal one if an executive moved to a higher rank next period and zero otherwise. Promotion is not defined for Rank-1 executives. ${ }^{\mathrm{b}}$ The demotion variable is a binary variable equal one if an executive moved to a lower rank next period and zero otherwise. Demotion is not defined for Rank 7 executives. The sample used is the Match Sample with all observations for executives coded for two consecutive time periods. The sample for the estimation of promotion excludes all Rank 1 executives in the last period while the sample for demotion excludes all Rank 7 executives in the last period. ${ }^{\text {c }}$ Turnover is a binary variable equal to one if an executive changed firms from one period to the next. The sample is the same as the promotion, but includes observations on all ranks including Rank 1. All regressions include sectorial dummies, assets, employees, compensation last period, education variables, and job-experience variables.

Table 10: Binary Logit Coefficient Estimates of the Effect of Gender on Occupation Exit Rates

	(1)	(2)	(3)	(4)	(5)
Constant	-2.238	-2.313	-2.313	-2.631	-2.612
	(0.348)	(0.416)	(0.416)	(0.420)	(0.420)
Female	0.650	1.119	1.127	1.124	1.076
	(0.341)	(0.499)	(0.500)	(0.519)	(0.521)
Ab. Return	-0.203	-0.149	-0.148	0.126	0.121
	(0.039)	(0.042)	(0.043)	(0.045)	(0.045)
Ab. Return \times Female			-0.015	0.064	0.049
			(0.236)	(0.308)	(0.305)
Negative Return				-0.991	-0.908
				(0.107)	(0.114)
Negative Return \times Female				-0.090	-0.350
				(0.675)	(0.694)
CEO's Negative Return					-0.441
					(0.205)
CEO's Negative Return \times Female					1.920
					(1.455)
Ab. Return Lagged	-0.157	-0.166	-0.168	-0.171	-0.171
	(0.033)	(0.038)	(0.038)	(0.037)	(0.037)
Ab. Return Lagged \times Female			0.082	0.093	0.088
			(0.214)	(0.210)	(0.211)
Rank 1	0.244	0.288	0.288	0.301	0.299
	(0.091)	(0.103)	(0.103)	(0.103)	(0.103)
Rank 2	-0.998	-0.967	-0.967	-0.981	-1.087
	(0.084)	(0.095)	(0.095)	(0.096)	(0.108)
Rank 3	-0.446	-0.393	-0.393	-0.395	-0.395
	(0.101)	(0.116)	(0.116)	(0.116)	(0.116)
Rank 4	-0.116	-0.091	-0.091	-0.087	-0.088
	(0.081)	(0.092)	(0.092)	(0.092)	(0.092)
Rank 5	0.056	0.058	0.058	0.068	0.067
	(0.081)	(0.092)	(0.092)	(0.092)	(0.092)
Rank 6	-0.065	-0.060	-0.060	-0.055	-0.055
	(0.083)	(0.093)	(0.093)	(0.093)	(0.093)
Rank $1 \times$ Female	-0.645	0.434	0.441	0.571	0.593
	(0.803)	(1.032)	(1.033)	(1.041)	(1.043)
Rank $2 \times$ Female	-0.220	-0.276	-0.267	-0.355	0.257
	(0.543)	(0.625)	(0.629)	(0.638)	(0.768)
Rank $3 \times$ Female	-0.828	-0.647	-0.646	-0.616	-0.632
	(0.545)	(0.788)	(0.790)	(0.795)	(0.798)
Rank $4 \times$ Female	-0.148	0.188	0.179	0.267	0.276
	(0.403)	(0.504)	(0.506)	(0.512)	(0.513)
Rank $5 \times$ Female	-0.296	-0.020	-0.033	-0.001	0.004
	(0.389)	(0.475)	(0.477)	(0.482)	(0.483)
Rank $6 \times$ Female	-0.367	0.010	0.005	0.090	0.094
	(0.388)	(0.471)	(0.473)	(0.479)	(0.481)
Experience variables	no	yes	yes	yes	yes
Experience-Gender interactions	no	yes	yes	yes	yes
Education variables	no	yes	yes	yes	yes
Education-Gender interactions	no	yes	yes	yes	yes
N	19,307	19,307	19,307	19,307	19,307

Note: Standard errors in parentheses. Exit is an absorbing state, so executives who leave all our data sets and do not return for four years are classified as exited. Exit is a binary variable equal to one in the year an executive exits the data set. The sample excludes the last three years of data. All regressions include sectorial dummies, assets, employees, compensation last period, and two lags of excess returns. Education variables are dummies for No College, MBA, MS/MA, Ph.D., and Professional Certification. Experience variables are years of managerial experience, years of tenure with the firm, number of past firm changes before becoming an executive, and total number of past firm changes.

Table 11: Background and Rank by Cohort and Gender

Cohort	39			49	
	Female	Male		Female	Male
Rank 1	0.01	0.03		0.02	0.03
Rank 2	0.00	0.10		0.10	0.19
Rank 3	0.02	0.08		0.05	0.09
Rank 4	0.31	0.25		0.30	0.25
Rank 5	0.21	0.20		0.26	0.19
Rank 6	0.29	0.24		0.22	0.18
Rank 7	0.17	0.11		0.07	0.07
Exec. Exp.	11.2	11.2		12.9	13.2
	(9.0)	(9.3)		(9.1)	(8.8)
Tenure	8.9	9.5		10.0	11.1
	(7.8)	(9.2)		(8.3)	(9.3)
NFC	2.2	1.8		2.0	1.9
	(1.7)	(1.6)	(1.8)	(1.8)	
No. of Exec. Moves	0.6	0.5	0.8	0.7	
	(1.0)	(0.9)		(1.1)	(1.2)

Table 12: Dynamic Gender-Gap Decomposition

	Expected Career Length (T)	Average Career Wage (W / T)	Discounted Earnings
At Age 49:			
Male	4.8519	$2,195,200$	$7,606,800$
Female	3.0901	$2,106,100$	$5,303,700$
Female with Male Initial Assignment $\left(q_{0}\right)$	3.0524	$2,240,700$	$5,494,000$
Female with Male Job Transition $\left(p_{r} s\right)$	3.0887	$2,171,600$	$5,415,700$
Female with Male Exit Rates $\left(p_{r} 0\right)$	4.5186	$2,061,400$	$6,907,800$
Female with Male Initial Rank Assignment	3.2660	$2,296,800$	$6,028,800$
Female with Male Career Distribution	4.8519	$2,298,500$	$8,092,300$
At Age 39:			
Male	4.9251	$1,931,400$	$6,395,200$
Female	3.1381	$1,820,900$	$4,540,800$
Female with Male Initial Assignment $\left(q_{0}\right)$	3.0495	$1,897,300$	$4,534,500$
Female with Male Job Transition $\left(p_{r} s\right)$	3.1853	$1,876,800$	$4,672,200$
Female with Male Exit rate $\left(p_{r} 0\right)$	$1,890,000$	$6,146,000$	
Female with Male Initial Rank Assignment	4.5752	$1,875,800$	$4,790,100$
Female with Male Career Distribution	3.2653	$2,034,400$	$6,862,000$

Table 13: Gender Differential Shares of Counterfactual Simulations

Age	Initial Age 39					Initial Age 49				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Survival Probability										
40	0.85	88	0	-29	7					
45	0.41	85	2	2	8					
50	0.21	73	5	5	7	0.81	67	-1	-10	9
55	0.11	63	4	3	4	0.44	98	-3	-1	8
60	0.07	63	4	2	3	0.21	80	2	6	9
65	0.04	59	3	1	2	0.14	72	2	5	7
70	0.03	54	3	1	1	0.10	70	2	4	5
Probability of Rank 2 over initial										
40	0.47	9	6	67	76					
45	0.30	34	13	19	23					
50	0.19	42	10	9	11	0.49	10	1	63	77
55	0.11	46	6	5	6	0.29	33	10	19	25
60	0.07	52	4	3	4	0.21	50	5	10	14
65	0.05	57	3	2	2	0.15	64	2	7	9
70	0.04	52	3	1	2	0.11	67	2	5	7
Probability of Rank 2 conditional on survival										
40	0.55	-5	8	104	103					
45	0.72	-47	71	106	103					
50	0.90	-217	187	156	158	0.61	-6	2	106	116
55	1.03	814	-302	-184	-214	0.67	-38	59	92	90
60	1.07	310	-46	-38	-36	0.99	-2,379	1,005	1,220	1,296
65	1.13	127	23	3	-10	1.12	169	4	-27	-39
70	1.20	114	54	-12	-8	1.15	123	41	-14	-13
Probability of Ever Reaching Rank 2										
40	0.55	71	8	106	105					
45	0.79	610	84	151	147					
50	1.04	-846	-233	-292	-293	0.61	91	2	108	118
55	1.10	-57	-13	-19	-20	0.76	366	68	129	125
60	1.04	-18	1	-6	-5	1.08	-188	-42	-75	-78
65	1.02	-8	5	-2	-2	1.05	-34	1	-9	-11
70	1.00	-4	6	-2	-1	1.01	-16	7	-4	-4
Probability of Rank 1 or 2 conditional on survival										
40	0.53	-4	11	97	95					
45	0.71	-44	71	102	99					
50	0.89	-195	176	141	142	0.59	-4	8	96	84
55	1.02	1,225	-494	-277	-324	0.65	-36	60	88	77
60	1.05	394	-77	-49	-46	0.97	-849	409	438	305
65	1.11	151	10	4	-11	1.09	215	-19	-34	24
70	1.17	131	46	-14	-10	1.12	150	29	-17	56

Note: Columns (1) and (6) are the ratio of the women's probability over men's probability. Columns (2)-(5) and (7)-(10), measured as percentages, are the shares of the gap closed by the each counterfactual simulation. Columns (2) and (7) are the counterfactuals of replacing women's exit rates with men's, holding all other inputs for women. Columns (3) and (8) are the counterfactuals of replacing women's transition probabilities with men's transition probabilities, holding all other inputs for women. Columns (4) and (9) are the counterfactuals of replacing women's initial distribution of both rank and human capital with men's, holding all other inputs for women. Columns (5) and (10) are the counterfactuals of replacing women's initial distribution of rank with men's, holding all other inputs for women.

Figure 2: Executives' Survival Probabilities

Figure 3: Probabilities of Being CEO, Chair(wo)man, or President

