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Abstract 

An information-theoretic maximum entropy (ME) model provides an alternative approach to 
finding solutions to partially identified models. In these models, we can identify only a solution 

set rather than point-identifying the parameters of interest, given our limited information. Manski 
(2021) proposed using statistical decision functions in general, and the minimax-regret (MMR) 

criterion in particular, to choose a unique solution. Using Manski’s simulations for a missing data 

and a treatment problem, including an empirical example, we show that ME performs the same 
or better than MMR. In additional simulations, ME dominates various other statistical decision 

functions. ME has an axiomatic underpinning and is computationally efficient. 
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Any inference or modeling problem with insufficient information or missing data has 

multiple possible solutions, each of which is consistent with the available information. The 

partial identification approach yields estimates or predictions based on various sets of 

assumptions, rather than exact or probabilistic estimates (e.g., Haavelmo, 1940; Wald, 1944; 

Leamer, 1985; Tamer, 2010; Manski, 2021, 2025; and Manski, Sanstad, and DeCanio, 2021). 

Based on this incomplete information, how should one make a prediction, choose a treatment, or 

make other decisions to maximize welfare? The choice depends on whether the criterion is 

Bayesian, maximizing the minimum welfare (maximin), minimizing the maximum risk (Wald, 

1944), information-theoretical, or other. A seminal paper by Manski (2021) discusses the first 

three of these approaches, focusing on a statistical decision theory approach that minimizes the 

maximum risk or regret (minimax regret, or MMR). We propose using an information-theoretical 

approach, such as maximum entropy (ME), as an alternative and compare it to other commonly 

used approaches. 

 The partial identification method begins by asking what inferences a researcher can make 

using only empirical evidence, which typically yields a range of possibilities due to partial 

information. The researcher then examines how various assumptions narrow this range (called 

the “identified set”) by providing more information (Tamer, 2010). The philosophical 

underpinning of this process is that conclusions and actions based on empirical models with 

fewer questionable assumptions are more believable.  

Much of the partial identification literature addresses identification problems generated 

by imperfect data quality, including measurement error and missing data. A planner specifies a 

state space listing all states of nature deemed feasible. Wald (1945) and others have 

recommended evaluating the performance of a statistical decision function (SDF) by the state-

dependent vector of expected welfare that it yields.  

We illustrate an information-theoretic approach and compare it to various alternative 

decision functions using three sets of simulations: two from Manski (2021) and a six-sided die 

problem.1 Manski’s first application is based on a prediction problem from Haavelmo (1940). 

 

1 We are grateful to Chuck Manski for his gracious help regarding simulations, and to him and 
Valentyn Litvin for sharing their STATA code.  
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Manski examined predictions of bounded outcomes under square loss when some outcome data 

are missing.  

 His second application concerns the treatment response in randomized trials and 

observational settings to inform treatment choice with two treatments. Realized outcomes are 

observable, but counterfactual ones are not. The problem is to choose treatments in a population 

with the same distribution of treatment response as the study population.  

 In our third simulation, a six-sided die problem (an unconditional multinomial problem), 

we compare the MMR of ME to several alternative SDFs: least squares, empirical likelihood, 

and Rényi (or the equivalent Cressie-Read). 

 The information-theoretic method has four attractive features. First, it has an axiomatic 

underpinning (see the Appendix for a summary of the axioms). Second, it is simple to model, 

compute, and estimate. Third, it can be used with any problem, not just those with a discrete 

number of choices. Fourth, restrictions can be easily imposed as additional constraints, which 

facilitates partial identification bottom-up comparisons where one adds assumptions one at a 

time. 

 We start by briefly summarizing the MMR and ME approaches. The next two sections 

replicate Manski’s (2021) missing data and treatment problems using ME. The fourth section 

provides a graphical interpretation of information-theoretic approaches. The fifth section uses a 

six-sided die problem to compare various SDFs. The final section contains a conclusions. 

Two Approaches to Predicting or Selecting an Action 

Consider the problem of a policymaker who selects an action. That action’s effect on welfare 

depends on an unknown state of nature. The first step is to specify a state space that contains all 

the states the policymaker believes are possible, which partially identifies the action. The 

policymaker may observe sample data that might contain information about the true state. 

However, the policymaker chooses an action without knowing the true state. Two approaches are 

to use a statistical decision function (SDF) that minimizes the maximum risk or maximizes 

entropy. 
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Minimize Maximum Regret 

To choose an action or make a prediction, Wald (1945) advocated using an SDF that minimizes 

the maximum risk. He demonstrated that his approach is analogous to game theory, where the 

statistician plays a game against nature, assuming nature seeks to maximize risk. 

In several papers, Manski (e.g., 2005, 2021) reformulated Wald’s criterion to partial 

identification problems into the minimize maximum regret criterion. Several authors have 

employed this approach, including Stoye (2009), Hirano and Porter (2009), Tetenov (2012), and 

Kitagawa and Tetenov (2018). 

The objective of the policymaker or researcher is to employ statistical decision theory to 

optimize welfare across the entire set of feasible actions. As Manski (2021) explained, the 

policymaker has a predetermined choice set C and believes the true state of nature s* lies in state 

space S. The welfare function, w(∙, ∙): C x S → R1 maps actions and states into welfare. The 

policymaker cannot maximize w(∙, s*) because s* is unknown, but can use observed data to 

shrink the state space. 

The MMR criterion solves 

 min max max ( , ) ( , ) ,
c C s S d C

w d s w c s  

where maxd∈C w(d, s) − w(c, s) is the regret for action c in state s. Because we do not know the 

true state, we evaluate c by its maximum regret over all possible states and select the action that 

minimizes maximum regret. The maximum regret of an action is a measure of the maximum 

distance from optimality across states. 

This approach is an elegant solution to the partial identification problem. However, it is 

relatively difficult to use. Manski (2021, pp. 2833 and 2848) observed that, “The primary 

challenge to use of statistical decision theory is computational… Whereas computation of regret 

in one state is tractable, finding maximum regret across all states may be burdensome. The state 

space commonly is uncountable in applications. A pragmatic process is to discretize S, 

computing regret on a finite subset of states that reasonably approximate the full state space.” 

That approach can be estimated for treatment and missing data problems (with and without 

instrumental variables) using STATA (Litvin and Manski, 2021).  
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Maximum Entropy 

The modern information-theoretic approach, Jaynes (1957), is based on Shannon’s (1948) 

communication (information) theory. It has been applied in many disciplines (such as biology, 

chemistry, computer science, ecology, economics, econometrics, finance, medical sciences, 

physics, political science, statistics and visualization). See, for example, Levine and Tribus 

(1979), Golan (2018), and Golan and Harte (2022)2.  

We concentrate on the simplest information-theoretic model. It is a constrained 

optimization approach with an information-theoretic decision function. That decision function is 

Shannon’s (1948) entropy. The Shannon entropy of a random variable is the average level of 

uncertainty or information associated with the variable’s potential states or possible outcomes, s. 

Let the probability of each state be p(s) ∈ [0, 1]. Shannon used axioms to derive his information 

measure, which is called (Shannon) entropy:3  

 ( ) ln ( ).
s S

H p p s p s  

where “ln” stands for the natural logarithm. 

The simplest information-theoretic approach is Jaynes’s (1957) classic maximum entropy 

(ME) model, where only the observed data (if any) and known theoretical information are used.4 

The ME approach seeks the probability distribution that maximizes Shannon entropy, subject to 

constraints capturing all the available information, which determines the identified set. We 

illustrate how to specify constraints and then solve the optimization problem using Lagrange 

multipliers in the following sections.  

The ME and the more general IT framework—also known as the Generalized Maximum 

Entropy (GME)5 approach—are easy to implement. These inferential and modeling methods are 

 

2 For an application of an information-theoretic approach for complete information games under 
partial identification, see Jun and Pinske (2020). 
3 Independently, Wiener (1948) introduced other logical arguments to derive H. Cover and 

Thomas (2006) provide a clear discussion and simplification of these axioms.  
4 Shore and Johnson (1980), Skilling (1989), and Csiszar (1991) provide a complementary set of 

axioms justifying the maximum entropy (or minimum relative entropy) as an inferential method. 
For details and extensions, see Golan (2018). See the brief summary of the axioms in the 

Appendix. 
5 GME generalizes the ME approach for cases with greater uncertainty and model ambiguity 
(Golan, 2018). We do not examine it here. 
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included in many statistical packages and programming languages (such as GAMS, MATLAB, 

Mathematica, NLOGIT, R, Python, SAS, SHAZAM, and STATA).6 

Prediction with Missing Data and an Unknown Observability Rate 

Both the MMR and ME approaches can make predictions in situations with missing data and an 

unknown observability rate. When welfare is measured by square loss and the distribution is 

known, the best predictor is the population mean. However, if the distribution is not known, we 

need an alternative approach. 

Minimize Maximum Regret 

Manski (2021) addressed predictions under square loss when some outcome data are missing. 

Consistent with the previous literature, the risk of his predictor based on sample data is the sum 

of the population variance of the outcome and the mean squared error (MSE) of the predictor as 

an estimate of the mean outcome. The regret of this predictor is its MSE as an estimate of the 

mean. Consequently, the MMR predictor minimizes maximum MSE. The MMR prediction of the 

outcome is equivalent to minimax estimation of the mean. 

 Because data are missing, he proposed employing an as-if MMR prediction: Use a point 

estimate of the model’s parameters to make a decision that would be optimal if the estimate were 

accurate. Suppose we know the population rate of observing outcomes but lack knowledge about 

the distributions of observed and missing outcomes. We treat the empirical distribution of the 

observed data as if it were the population distribution of observable outcomes. 

We have a fixed number of observed outcomes. Given that we lack knowledge of the 

distribution of missing outcomes, the population mean is partially identified when the outcome is 

bounded. In the following simulations, the outcome y is normalized to lie in [0, 1]. The fraction 

of the population whose outcome is observed is p(δ = 1), and p(δ = 0) is the fraction without an 

observed outcome. Manski showed that the identification region for E(y) is the interval 

[E(y|δ = 1)p(δ = 1), E(y|δ = 1)p(δ = 1) + p(δ = 0)].  

The midpoint of this interval would be the MMR predictor if we knew the interval. He 

estimates the mid-point predictor when p(δ) is unknown and is estimated by its sample analog. 

 

6 See https://info-metrics.org/code.html for a list of programs and languages and links to codes. 

https://info-metrics.org/code.html
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Although he lacks an analytical expression for the maximum regret, Manski and Tabord-Meehan 

(2017) and Litvin and Manski (2021) provide a STATA algorithm for numerical computation.7 

Maximum Entropy 

An alternative approach is to use the Maximum Entropy (ME) method. Using the same notations 

as above, let y and  be binary variables, each taking the values zero or one. We observe y if  = 

1. Let the joint probability distribution of y and  be 
ijp for , 0,1i j = . We observe 01y , 11y , and 

( )δ 0p = , so ( )01 11 0 1p p p + + = = . Because 00p  and 10p  are unobserved, E[y] is partially 

identified if ( )| δ 0 0,p y =   and   ( ) ( ) ( ) ( ) ( )| δ 1 δ 1 , | δ 1 δ 1 δ 0E y E y p E y p p = = = = + =   . 

We now show that for the missing data problem (with known or unknown observability 

rate), the ME solution is 00 10p p= , so ( )1

0 012
δ 0y p y= = +  and ( )1

1 112
δ 0y p y= = + . 

To solve this partially identified problem, we convert it to the classic ME formalism 

(Jaynes, 1957; Levine, 1980, Golan, 2018, Chapter 4). The problem is written as a constrained 

optimization where all the observed and known information are specified as constraints that 

determine the identified set and use the Shannon entropy (Shannon, 1948) decision function to 

choose a single solution. 

The only two sets of information we have are 1 1i ip y= , where 1iy  are the observed values 

of 01p  and 11p  for i = 0, 1, and the normalization 1ijij
p = . To choose a unique solution from 

the partially identified set, we maximize the Shannon entropy subject to the two sets of 

information in the constraints: 

 

1 1

.

 Max ln

subject 

, 0,

1

o

1

t

i i

P

i

i

j

i j

ij

i

j

j

p

y p i

p

p


= =


− 

 

=



       (1) 

The corresponding Lagrangian is 

 

7 Their algorithms work if y is binary. If y is distributed continuously, the sample frequencies are 
approximated by Beta distributions. 



8 

 

( ) ( )1 11 1 .ln i

i

i iij ij j

j
ii

i
j

L pp y pp  = − −− + +       (2) 

The solution is 

( )
( )

( )
( )

ˆ ˆexp exp
ˆ 

ˆ ˆexp

ij ij

ij

ij ijij

p
 

 

− −
= 

− 
,     (3) 

where 
ij  are the Lagrange multipliers associated with the first set of constraints (the real 

information)
1 1i ip y= , ( )   is a normalization function (known also as the partition function), 

and the multipliers associated with   = 0 are zero, 0 0i = . Consequently, in the absence of 

additional information, the estimated probabilities p
00

 and p
10

 must be the same: p
00

 = p
10

. 

Therefore, the estimated solution (E[y]) is the midpoint. For the missing data problem (with 

known or unknown observability rate), the ME solution is p
00

 = p
10

, so ( )1

0 012
δ 0y p y= = +  and 

( )1

1 112
δ 0y p y= = + . 

 Using the Shannon entropy as the decision function means that out of all possible 

inferences that are consistent with the information in Equation 1, the chosen inference is the least 

informed (Jaynes, 1957). It is the inference that is the closest to a uniform distribution—a state of 

perfect uncertainty. One can view it as the “least biased” inference in the sense that it is not 

affected (biased) by any implicit or explicit information beyond the constraints.  

Simulations 

Manski (2021) conducted two simulations for a binary outcome with missing data. The first 

computes the maximum regret of the midpoint predictor (Table I). The second (Table II) provides 

the maximum regret for prediction by the sample average of the observed outcome. 

 For each simulation, he considered two possibilities. Either all distributions are feasible 

within the identified set, or we have additional bounds on the difference between the observed 

and missing outcomes distributions, shrinking the identified set. He imposed the bounds of –½ 

≤ p(y = 1|δ = 1) − p(y = 1|δ = 0) ≤ ½. The identification problem is more challenging in the first 

case because the bounds provide additional information.  

 His simulations had sample sizes of 25, 50, 75, and 100, and observability rates in 

increments of 0.1 from 0.1 to 1. As he observed, the maximum MSE of a predictor depends on 
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statistical imprecision and the identification problem from missing data. The maximum variance 

decreases with sample size, and the maximum squared bias falls with the observability rate p(δ = 

1).  

 We use ME to replicate his simulation of the maximum regret of the midpoint predictor 

and calculate the MMR (MSE). We do not report our results because the ME and MMR results 

are identical (minor rounding aside) to Manski’s Table I. We expect this result for the missing 

data problem because the midpoint is the solution for both the ME and MMR.  

 His second simulation of the sample average predictor imposes an additional assumption: 

independence between y and . For the ME, we impose that information as an additional 

constraint pij = pi(y)   pj(δ) or similarly (p11/p01) = (p10/p00). With this additional information, our 

ME simulations is equivalent to his Table II, as the problem is no longer underdetermined. 

Treatment Choice 

We now turn to a treatment choice problem. Suppose that a policymaker wants to assign people 

to different potential treatments. The problem depends on the number and types of treatments as 

well as how the experiment is conducted, which affects the observable information.  

 Here, we use the problem from Manski (2021, Section 5.2). The policymaker wants to 

select a single treatment for the entire population using knowledge of the distribution of realized 

outcomes from a sample.  

 Unlike in the previous missing data problem simulation, the ME and Manski’s MMR 

results are not quantitatively identical. However, both approaches make the same treatment 

recommendation for this specific empirical problem, as our simulation results show. That is, they 

are qualitatively the same. 

 In Manski’s problem, individuals are assigned to different treatments a or b based on 

knowledge of the distribution of observed outcomes in a sample. Each person in the study 

population has the potential outcomes or welfare y(a) or y(b). A binary indicator [δ(a), δ(b)] 

indicates whether these outcomes are observed.  

 Because we do not observe the counterfactual outcomes, the possible indicator values are 

[δ(a) = 1, δ(b) = 0] and [δ(a) = 0, δ(b) = 1]. We observe only the realized outcomes, so the 

probabilities add to one: p[δ(a) = 1] + p[δ(b) = 1] = 1. The state s indicates a possible distribution 

ps[y(a), y(b), δ(a), δ(b)] of outcomes and observability. The decision maker chooses treatments in 
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a population with the same distribution of treatment response as in the study population to 

maximize welfare. 

To illustrate this problem, Manski used data from Manski and Nagin’s (1998) analysis of 

two sentencing options for juvenile offenders in Utah. At a judge’s discretion, the treatment of 

some offenders is residential confinement. a, while others are not confined, b. They observed 

recidivism, y, within two years of sentencing, where y = 1 if a youth did not commit a new 

offense, and y = 0 otherwise.  

Within the sample, 11% of offenders were confined, a. The sample probability 

(frequency) was p[(y(a)| (δ(a) = 1) = 1] = 0.23 for those who were confined and did not offend 

again. Of the remaining 89% who were not confined, p[(y(b)| (δ(b) = 1) = 1] = 0.41. 

Two possible counterfactual policies could replace judicial discretion with a mandate that 

either all offenders or none are confined. Manski (2021) used what he called the asymptotic 

minimax-regret (AMMR) rule. The AMMR chooses a treatment if its probability exceeds one-

half. 

We now show how to determine a rule using ME. The partial information consists of the 

individuals’ choices given the treatments. We do not include any additional information or 

assumptions. We can approach this problem in two ways. We can estimate the model for both 

treatments simultaneously or examine each treatment separately. We do the latter because the 

presentation is simpler. 

We utilize the treatment information to construct the distributions of a and b over zero 

and one. Then, we obtain the joint distribution of a and b given independence. For treatment a, 

let 
*

0 01 02a a a= +  and 
*

1 11 12a a a= +  where the star stands for observed information, and the 

second element in each equation is the unobserved counterfactual. For example, a02 is the 

probability that a person who received treatment a would have chosen action zero if they 

received treatment b. Similarly, a12 is the unknown counterfactual of an individual who received 

treatment b and chose 1 if they received treatment a. We do not know the counterfactuals a02 and 

a12. Let p[y(a) = 0] = p[(y(a)|(a) = 1) = 0] + p[y(b)|(b) = 1], p[y(a) = 1] = p[(y(a)|(a) = 1) = 0] 

+ p[y(b)|(b) = 1] and p[y(a) = 0] + p[y(a) = 1] = 1. We use analogous notation for y(b).The p’s  

are unknown and the y’s are observed. 
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 We now connect the observables and unobservable (counterfactuals) 

( ) ( ) ( )0 01 02y a y a y a= +  and ( ) ( ) ( )1 11 12y a y a y a= + , where the first term to the right of each 

equality is observed and the other terms are not (counterfactuals). For  i = 0, 1 and j = 1, 2 (and 

suppressing the “a” for now), we specify the information we have in the two constraints: 

1 2i i iy y y= −  and 1ii
y = .  Reorganizing, 1 2 2i i i ij ij

y p p p p= − = −  because i ijj
p p=   

and  1ijij
p = . 

 The ME model is 

 
( )

1 2

Max log

subject to

,  0,1

1 .

ij

ij ijijp

i ij ij

ijij

p p

y p p i

p

−

= − =

=







     (4) 

The corresponding Lagrangian is 

( ) ( ) ( )1 2log 1ij ij i i ij i ijij j ij
i

L p p y p p p = − + − + + −    . 

The estimated probabilities are 

( )

( )

exp  for 1

exp 0  for 2,

i

ij

j
p

j

 −  =
= 

 =

 

where ( )exp
ij

 =   is the normalization factor. 

 In this empirical example, 01 (0 | ) ( ) 0.77 0.11 0.0847y p a p a=  =  =  in Equation (4).  

The observed 11y  is calculated from the data in a similar way. 

Substituting b for a gives a similar model for treatment b. Using the data, the solutions 

are: 

0

ˆ
ap = 0.5297 = 0.0847 + 0.4450 and 

1

ˆ
ap  = 0.4703 = 0.0253 + 0.4450  

0

ˆ
bp  = 0.5801 = 0.5251 + 0.0550 and 

1

ˆ
bp = 0.4199 = 0.3649 + 0.0550. 

 By construction, the estimated values of the unknown entities for a and b (say, p
02

(a) and 

p
12

(a), or p
02

(b) and p
12

(b)) are distributed uniformly. Because we lack information in the model 

about that missing information, it must be distributed equally. 
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The joint distribution is 

 0 1 

a 0.2806 0.2212  

b 0.3365 0.1763  

 Table 1 shows the conditional probabilities under two scenarios: sentencing as in the 

sample or random sentencing. The second column shows the results based on the sample’s 

assignment frequencies (11% and 89%), where judges have discretion in sentencing. To simplify 

notations, let p(1|a) be the conditional probability of y = 1 given that the individual was confined, 

treatment a. Similarly, let p(1|b) be the conditional probability of y = 1 given treatment b. 

Because p(1|a) > p(1|b), treatment a (confinement) is preferred to treatment b (no confinement) if 

the objective is to minimize recidivism (bold numbers, column 2). The MMR analysis draws the 

same conclusion. 

Table 1 

The Conditional Probabilities Under Two Scenarios:  

Sample’s Frequencies and Random Assignments 

 

Conditional  

Probability 

Sample  

Sentencing 

Random  

Sentencing 

P(0|a) 0.5592 0.7517 

P(1|a) 0.4408 0.2483 

P(0|b) 0.6562 0.5893 

P(1|b) 0.3438 0.4107 

 

 In the third column, judges sentence offenders randomly to treatments a and b. Here, p(a) 

= p(b) = 0.5. The ME results (the conditional probabilities in column 3) change so that p(1|b) > 

p(1|a). Again, we draw the same recommendation as the MMR analysis of the same problem.  

 In Table 2, we apply our ME approach to the simulations from Manski’s Table III, where 

we use his random treatment assignment assumption. In panel A, all distributions are feasible. 

Panel B imposes Manski’s additional restriction that −
1

2
≤ 𝑝[𝑦 = 1 |𝛿 = 1] − 𝑝[𝑦 =

1 | 𝛿 = 0] ≤
1

2
, which shrinks the identification set. The sample size (N) in both panels ranges 
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from 25 to 100 in increments of 25. Each column has a value of p ranging from 0.5 to 0.9 in 

increments of 0.1.8 

 The top number in each cell is the MMR from the ME simulation. The number 

underneath it in parentheses is the difference between the mean squared error calculated using 

AMMR (Manski, Table III) and the MSE using ME. Thus, a positive number indicates that the 

ME approach has a lower MSE than the AMMR approach. Thus, the ME approach has a lower 

MSE (AMMR) for all cases except the first two columns of the N = 25 row of panel B (with the 

extra restriction).  

 The ME and AMMR tables share certain properties. Maximum regret does not vary 

substantially with p. For a given p, maximum regret rises with N in Manski’s Table III (see 

Manski for an explanation), while decreasing slightly in most ME columns. The MSE is smaller 

in panel B than in panel A because the restriction in panel B provides more information, which 

reduces the identification set. For the ME, the restriction reduces the MMR only moderately for 

p = 0.5, 0.6, and 0.7 and N = 25, but has no effect for all other p’s and N’s. In contrast, the extra 

information has a more substantial effect for the MMR approach. 

Table 2 

Maximum Regret (MSE) Using Maximum Entropy 

Panel A 

 p 

Sample Size 0.5 0.6 0.7 0.8 0.9 

25 0.2980 

(0.0436) 

0.2974 

(0.0467) 

0.2971 

(0.0450) 

0.2888 

(0.0540) 

0.2766 

(0.0703) 
50 0.2934 

(0.0813) 

0.2937 

(0.0845) 

0.2956 

(0.0817) 

0.2868 

(0.0924) 

0.2749 

(0.1028) 

75 0.2886 
(0.1019) 

0.2915 
(0.0972) 

0.2949 
(0.0950) 

0.2886 
(0.1066) 

0.2724 
(0.1175) 

100 0.2869 
(0.1154) 

0.2947 
(0.1074) 

0.2972 
(0.1039) 

0.2918 
(0.1108) 

0.2766 
(0.1256) 

 

Panel B 

Imposing −
1

2
≤ 𝑝[𝑦 = 1 |𝛿 = 1] − 𝑝[𝑦 = 1 | 𝛿 = 0] ≤

1

2
 

 p 

Sample Size 0.5 0.6 0.7 0.8 0.9 

 

8 As Manski notes, we do not need to consider p values below 0.5 because the state space in each 
panel views the treatments symmetrically, so the maximum regret is the same for p and 1 – p. 
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25 0.2980 
(–0.0208) 

0.2958 
(–0.0053) 

0.2954 
(0.0087) 

0.2876 
(0.0202) 

0.2766 
(0.0547) 

50 0.2934 
(0.0192) 

0.2937 
(0.0353) 

0.2956 
(0.0465) 

0.2868 
(0.0666) 

0.2749 
(0.0897) 

75 0.2886 

(0.0391) 

0.2915 

(0.0482) 

0.2948 

(0.0573) 

0.2886 

(0.0762) 

0.2724 

(0.1050) 
100 0.2869 

(0.0533) 

0.2947 

(0.0630) 

0.2972 

(0.0759) 

0.2918 

(0.0934) 

0.2766 

(0.1161) 

 

 

A Graphical Interpretation 

We now use figures to illustrate how the information-theoretic model works in an unconditional 

multinomial problem. Let x
k
, k = 1, 2, or 3, be a discrete random variable. We want to infer the 

probability distribution p. 

 Although we have no uncertainty, the following problem is partially identified because 

we have insufficient information. Our only information is that the (nonnegative) probabilities 

sum to one, and the arithmetic mean value, after N trials, is k k kk k
y p x p k= =  .  

Like any partially identified (or underdetermined) problem, this one can be transformed 

into a well-posed, decision-theoretic constrained optimization problem. Assuming the decision 

function is well-behaved (e.g., it is concave), the estimated solution will be unique. Using the 

Shannon entropy as our decision function, the ME is 

 
( ) 3

1

1

Maximize ln

subject to 

1

0,  for 1,2,3.

k kkP

kk

K

kk

k

p p

y p k

p

p k =

=

=

−

=

=









     (5) 

The equality conditions, also known as conservation rules or conservation laws, capture 

all the information used in the inference. These are the rules that govern the behavior of the 

underlying system or distribution. If we know the data generating process and specify the 

constraints accordingly, then these constraints are sufficient statistics.  

Constructing the Lagrangian and solving yields the optimal solution, 
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( )
( )

( )
( )

ˆ ˆexp λ exp λ
ˆ ,

ˆ ˆexp λ λ
k

k

k k
p

k

− −
= 

− 
     (6) 

where λ̂  is the estimated Lagrange multiplier associated with the mean constraint,   indicates a 

definition, and () is the normalization. The Lagrange multiplier associated with the 

normalization constraint, λ
0
, is a function of the other multiplier. 

 Figure 1 shows the three-dimensional discrete choice problem and solution over the 

complete simplex. The vertices V1, V2, and V3 are the extreme distributions (1, 0, 0), (0, 1, 0), 

and (0, 0, 1) for k = 1, 2, 3, respectively. Every point in the simplex (including on the boundaries) 

is a normalized probability distribution, 1kk
p = , where the values kp , k = 1, 2, 3, correspond 

to the distances from the sides V2V3, V1V3, and V1V2, respectively.  

The point (circle) in the lower right of the simplex is one such distribution, p = 

(p1,  p2, p3), where 2 1 3.p p p   The midpoint (the center of gravity) of the simplex, Hmax, 

represents the uniform distribution (p1 = p2 = p3). It has the maximum entropy of ln(3) = 

( ) ( )
3

1 1

3 3
1

ln 3 ln( )k k

k

p p
=

− = − . The points at the three vertices have the minimum value of the 

Shannon entropy, Hmin = 0, because they have no uncertainty. 

 The various straight lines across the simplex represent possible linear constraint sets for 

some values of kk
y p k=  . For example, the constraint y = 2 is the straight line from the 

middle of the V1V3 side (the left side of the simplex) to the V2 vertex. It shows all the points with 

a mean value of 2. The identified set for the y = 2 case is the line 
3

1
2 kk

p k
=

=  . 

 The contours (“indifference curves”) connect distributions with equal entropy. The darker 

and thicker the contours, the higher the entropy. Contours far away from the center have lower 

entropy. The dark, heavy curve is the locus of optimal solutions, connecting the distributions 

with maximum entropy under the constraints for all values of  1,3y  . 
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Figure 1 

Graphical representation of the three-sided die problem and solution over the complete 

simplex space 

 

 

 
   

The Decision Function Effect 

The ME solution with H(p) as the decision function is the one out of an unlimited number of p’s 

that satisfy the information provided in the constraints (the identified set). It is the least informed 

solution: The one that is as close as possible to the uniform distribution, which captures 

maximum uncertainty. It has the flattest possible likelihood that is consistent with the observed 

expectation values (constraints), as Zellner (1997) argued.  
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 This likelihood is not assumed to be known a priori. Rather, it is a direct consequence of 

the joint choice of the decision function and the structure of the information imposed. We could 

use other decision functions to choose the estimated solution. Any other decision function 

introduces additional information, thus restricting the possible solution space.  

 In many partial identification problems, we want to compare models and SDFs. We want 

each model to use the same information except for a single ingredient. Here, that ingredient is the 

decision function. Using the same problem and information as the one described and illustrated 

in Figure 1, Figure 2 adds the loci of optimal solutions for five commonly used approaches, each 

with a different SDF. 

 These approaches are all special cases of the Rényi entropy, a generalized information 

measure. With an objective of describing the gain of information, Rényi (1961) developed an 

entropy measure of order α for incomplete random variables. An incomplete, discrete random 

variable with K distinct realizations, each with pk > 0 (k = 1,…, K), is defined such that 

1kk
p  , rather than 1kk

p = . We can normalize such an incomplete random variable so it 

sums to one. Rényi’s generalized entropy measure for a normalized probability distribution of 

order α is 

                                          ( )
1

log
1

R

k

k

H p p




=
−

 . (7) 

 The Rényi relative entropy (between two distributions p and 
0p  for the discrete random 

variables X and Y) of order  is 

( ) ( )0

0, 1

1
log .

1

R R k

k k

p
D X |Y D p || p

p



   −
= =

−
      (8) 

A similar generalized entropy measure is the Cressie-Read (1984) measure: 

( )0

0

1
| 1

(1 )

CR k
k

k k

p
D p p p

p




 

  
 = − 

+    
 .     (9) 

From an inferential point of view, the Rényi of order  is equivalent to the Cressie-Read of order 

–1: ( ) ( )0 0

1

R CRD p|| p D p || p  −= . 
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Figure 2 presents the loci of optimal solutions for the following statistical decision 

functions (and a uniform p0), which are all special cases of the Rényi function:  

• Shannon entropy, where 1 → , 

• Least squares (LS): ( ) ( )0 0

2 1

R CRD p|| p D p || p= , 

• Empirical likelihood (EL): ( ) ( )0 0

0 1

R CRD p|| p D p || p−= , where 1 → − , 

• Rényi with α = 3, 4, and 5 (or similarly, Cressie Read with of  = 2, 3, and 4).  

 
 Figure 2 illustrates the differences across the complete solution space for all possible 

values of  1,3y  . All the loci intersect the center of gravity, the uniform distribution, where the 

expected value is exactly 2. Elsewhere, the various methods have different solutions. Each locus 

is symmetric about the center of gravity. This figure illustrates two points. 

 First, the differences among the methods are due only to the differences in the decision 

functions. The figure provides a visualization of the amount of information relative to the ME 

introduced by each decision function.  

 Second, out of these six methods, the maximum entropy—based on Shannon entropy—

locus (solid, dark line) is the most uninformed. It is the one that is closest, in information units, 

to the uniform distribution at each point within the simplex. The empirical likelihood (dashed, 

with dots, light grey line) has the same basic shape as the ME, but it is not as uniform due to 

additional information in its SDF.  In fact, empirical likelihood is a power law. All the others 

have extreme solutions (one of the probabilities is zero) for more extreme values of y. In this 

simple example, the least square solution does not exist for values below 4/3 and above 8/3. 

These extreme solutions mean that the inferred distribution is such that one of the events is ruled 

out—an unrealistic outcome. 

 This example demonstrates that information theory provides a means for ranking 

estimators based on the information embedded in their decision functions or likelihoods, which 

are composed of the constraints (including assumptions imposed) together with the decision 

function. 
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Figure 2 

Comparison of the three-sided die problem for six decision functions 

 

Concentrated Model 

We can use duality theory to convert the ME problem from a constrained optimization to an 

unconstrained one. It is a transformation from the probability space to the Lagrange multiplier 

space. The concentrated ME model estimates the minimal set of parameters needed to 

characterize the system fully. Because we are dealing with partially identified problems, the 

number of Lagrange multipliers is much smaller than the dimension of the probabilities. In 

addition to being computationally simple and efficient, the concentrated model provides a simple 

way for comparing the ME with other inferential approaches. These comparisons are 

straightforward because the concentrated model is formulated similarly to a likelihood. 
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Six-Sided Die Simulation 

To select between multiple solutions in an underdetermined or partially identified problem, a 

researcher chooses an SDF. The following simulations compare four SDFs: Shannon entropy, 

empirical likelihood, least squares, and Rényi entropy of order three: ( )1 3

3 2 1
ln

KR

kk
H p

=
= −  .  

 Suppose we have a K-dimensional discrete random variable, X, where each realization xk 

has the probability pk. If we know or observe only two pieces of information and K > 2, the 

problem is partially identified. For simplicity, and without loss of generality, we assume that K = 

6, the six-sided die problem: 
kx k= . The two pieces of information are the normalization of the 

nonnegative probabilities ( )1kk
p =  and the first moment or expected value ( )kk

p k y= . 

In our simulations, each sample is generated from a uniform or one of three normal 

distributions. The data generating processes (DGP) for the three normal models are N(3.5, 3), 

N(3.5, 7), and N(2, 5).  

For each of 2,000 samples, we calculate the expected value for the true pk’s. Using a grid 

within the simplex, we ensure the data cover the complete parameter space ( )1,6y   for each 

one of the sampling experiments. However, the concentration of data points about the mean 

depends on the DGP’s variance. 

We use our four SDFs to infer the probability distribution given the two pieces of 

information. We show the minimum maximum regret (MMR) using the mean squared error 

(MSE). We also conducted the same experiments using the Kullback-Leibler (KL) criterion with 

the same qualitative results.9 We compute the MMR for each SDF by assuming it is correct and 

comparing the MMR of each of the other SDFs. Then, we select the maximum value for each 

case and choose the minimum from those, which are bold values in the tables. 

We consider two scenarios: misspecified models and correctly specified models. A 

correctly specified model is one where the functional form of the inferential model is the same as 

that of the DGP. For example, consider trying to infer the probability distribution based on 

several known moment conditions. It is a partially identified problem that we formulate as a 

 

9 All simulation results are available upon request. 
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constrained optimization problem. To do so, we need to (i) specify the information we have in 

terms of the constraints and (ii) choose a decision function.  

Assume we are trying to infer the probability distribution of data generated from an 

exponential distribution. Theory tells us that the sufficient statistic is the arithmetic mean. 

Specifying our constraint as an arithmetic mean and using Shannon entropy as the decision 

function yields the exponential distribution with a single parameter (the Lagrange multiplier of 

the mean constraint).  

If, instead, we know that the DGP is a power law (say, a Pareto distribution), theory tells 

us to use the geometric mean as the constraint (in addition to a normalization). Because it is a 

sufficient statistic, we are using the minimal necessary constraints/information. The ME in that 

case will yield a single-parameter (the Lagrange multiplier) power law. 

For normally distributed data, we must impose more than just the mean constraint. We 

need both the mean and the variance constraints in addition to the normalization. Maximizing 

Shannon entropy subject to these three restrictions yields the normal distribution. These 

examples are correctly specified models. That is, if we know the true underlying distribution and 

we impose the sufficient statistics as constraints, the resulting distribution is specified correctly. 

However, with a normal DGP, if we only impose the normalization and mean constraints 

but not the variance constraint, the ME is a misspecified model. Using too few constraints has 

the same effect on the other models. Since the real DGP is unknown in practice, this experiment 

on partially identified problems investigates the behavior of both correctly and incorrectly 

specified models. (We can also think of these two scenarios as completely or incompletely 

specified models.) Our sampling experiments show that under both scenarios, the ME minimizes 

the maximum regret. 

Table 3 presents the MMR under an MSE loss function for our four SDFs: least squares 

(LS), 2
kk

p ; empirical likelihood (EL), ( )log kk
p ; Rényi entropy of order 3; and Shannon 

entropy. The columns show the true SDF, and the rows show the comparison SDF. The right-

hand side column shows the MMR.  
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Table 3 

MMR Using MSE for the Six-sided Die Problem for Misspecified and Well-specified 

Models 

(The bold “Max” number in the right-hand side column is the global MMR for each 

scenario. The values of the MMR are multiplied by 1,000. For the normal DGP 

experiments, “Mean” indicates that only the mean constraint was imposed, so the model 
is misspecified.  “Var” indicates that both the mean and variance constraints were 

imposed, so the model is correctly specified under ME. Normalization is always 
imposed.) 
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MSE Experiments True objective function   

  U/Mean EL LS Renyi Shannon Max 

    Comparison objective function           

     EL 0. 0.6376 1.0972 0.1852 1.0972 

     LS 0.6376 0. 0.1565 0.1355 0.6376 

     Renyi 1.0972 0.1565 0. 0.4902 1.0972 

     Shannon 0.1852 0.1355 0.4902 0. 0.4902 

            

  Norm/Mean N(3.5,3) EL LS Renyi Shannon Max 

    Comparison objective function           

     EL 0. 0.0281 0.0296 0.0399 0.0399 

     LS 0.0281 0. 0.0373 0.0283 0.0373 

     Renyi 0.0296 0.0373 0. 0.0238 0.0373 

     Shannon 0.0399 0.0283 0.0238 0. 0.0399 

            

  Norm/Mean N(3.5,7) EL LS Renyi Shannon Max 

    Comparison objective function           

     EL 0. 0.7763 1.3048 0.2259 1.3053 

     LS 0.7763 0. 0.1737 0.1647043 0.7763 

     Renyi 1.3048 0.1737 0. 0.5643095 1.3048 

     Shannon 0.2259 0.1647 0.5643 0. 0.5643 

            

  Norm/Mean N(2,5) EL LS Renyi Shannon Max 

    Comparison objective function           

     EL 0. 1.1377 1.8350 0.3311 1.8350 

     LS 1.1377 0. 0.2126 0.2414 1.1377 

     Renyi 1.8350 0.2126 0. 0.7432 1.8350 

     Shannon 0.3311 0.2414 0.7432 0. 0.7432 

            

  Norm/Var N(3.5,3) EL LS Renyi Shannon Max 

    Comparison objective function           

     EL 0. 0.5098 0.9383 0.1723 0.9383 

     LS 0.5098 0. 0.1073228 0.1310 0.5098 

     Renyi 0.9383 0.1073 0. 0.4373 0.9383 

     Shannon 0.1723 0.1310 0.4373 0. 0.4373 

            

  Norm/Var N(3.5,7) EL LS Renyi Shannon Max 

    Comparison objective function           

     EL 0. 1.2380 2.1213 0.4298 2.1213 

     LS 1.2380 0. 0.2380 0.3016 1.2380 

     Renyi 2.1213 0.2380 0. 0.9362 2.1213 

     Shannon 0.4298 0.3016 0.9362 0. 0.9362 
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The Shannon criterion has the lowest MMR in all the simulations where it is correctly 

specified (normal with mean and variance constraints) and in all the other simulations except for 

the DGP N(3.5, 3). In that case, the mean is at the center of the 6-dimensional simplex, and the 

variance is relatively small, so data points are concentrated about the unbiased mean. Under 

MSE all decision functions have minor differences in their MMR’s.  The results also show that, 

as expected, the correctly specified model (Shannon decision function with mean and variance 

constraints for a normal DGP) dominates the misspecified models (only mean constraint).  

Conclusions 

Partial identification problems are ubiquitous. Researchers may use several statistical decision 

function (SDF) approaches. We add one more: an information-theoretical approach. We illustrate 

it using the classical information-theoretical method, maximum entropy (ME), based on the 

Shannon entropy SDF.  

 We use three sets of simulations to compare the ME approach to other SDFs. In the 

missing data problem simulation from Manski (2021), the ME produces the same result as the  

Wald-Manski minimum maximum regret (MMR) approach. In Manski’s treatment problem, the 

ME and MMR approaches produced the same qualitative results, but ME had a lower mean 

squared error (better MMR). In the six-sided die (unconditional multinomial problem) 

simulations, the Shannon SDF outperformed least squares, empirical likelihood, and Rényi of 

order three in terms of both MMR (mean squared error) and Kullback-Leibler criteria in all but 

one simulation experiment.  

 Of course, we do not know whether these results would hold more generally. However, 

these results illustrate that ME is a viable alternative to MMR and other SDFs for several partial 

identification problems. 

            

  Norm/Var N(2,5) EL LS Renyi Shannon Max 

    Comparison objective function           

     EL 0. 1.8033 3.0660 0.6317 3.0660 

     LS 1.8033 0. 0.3411 0.4435 1.8033 

     Renyi 3.0660 0.3411 0. 1.3559 3.0660 

     Shannon 0.6317 0.4435 1.3559 0. 1.3559 
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 The information-theoretic method has four attractive features. First, its SDF and 

inferential method have an axiomatic underpinning.   

 Second, it is easy to estimate using any of several statistical packages and programming 

languages. Estimation is quick because (i) it does not require Monte Carlo integration or other 

time-consuming computational methods, and (ii) it can be formulated and solved in its dual, 

unconstrained form.  

 Third, it can be applied to any problem, not just those with a discrete number of choices. 

Thus, a researcher does not need to discretize the state space.  

 Fourth, it is easy to impose additional constraints (often simply by writing them explicitly 

in a single line of the program). This simplicity facilitates bottom-up comparisons where one 

adds assumptions one at a time, making this method particularly well-suited for partial 

identification problems. 
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Appendix: Axioms 

The following is a brief summary of the axioms behind the entropy functional itself (Shannon 

1948; Wiener, 1948) and the IT method of inference. As Golan (2018) shows, various sets of 

axioms underlie the classical IT approach. Some are defined on the decision function itself, 

others on the inference itself, and one is based on a symmetry condition (Shore and Johnson, 

1980; Skilling, 1988, 1989; Csiszar, 1991; and Golan, 2018). Golan and Perloff (2002) presented 

a modification of the axioms for the more general framework (with ambiguity, misspecification, 

and flexible constraints).  

 Here, we use a set of axioms based on Shore and Johnson (1980), Skilling (1988, 1989), 

and Csiszar (1991). The starting point is that the inference is assumed to be an optimization 

problem. We start by characterizing the five properties (axioms) we want our method of 

inference to possess. Then, a unique inference approach is determined, which is the information-

theoretic method we use in this paper. 

 To simplify the exposition, consider the linear problem y = Xp, where y is an M-

dimensional vector of expectation values, X is an M × K matrix of rank M, and p is a K-

dimensional vector whose components are the unknown probabilities pk we wish to infer. These 

axioms are general and apply to other functions and constraints, such as those in this paper. 

 The five axioms represent a minimum set of requirements for a logically consistent 

method of inference from a finite data set. Following Skilling, we define a distribution f(x) as a 

positive, additive distribution function (PADF). It is positive by construction: ( ) 0k kf x p=   for 

each realization xk, 1,2,...,k K= , and strictly positive for at least one xk. It is additive in the 

sense that the probability in some well-defined domain is the sum of all the probabilities in any 

decomposition of this domain into sub-domains. A PADF lacks the property of normalization: 

1kk
p = .10 The inference question can be thought of as a search for those PADFs that best 

characterize the finite data set. Note that working with PADFs is not necessary but it allows us to 

avoid the complexity of dealing with normalizations, which simplifies the analysis. 

 

10 One can work with an improper probability distribution, p*, that sums up to a number s <1, by 

normalizing so that * * */ /
k k k k

p p p p s . 
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 The objective here is to identify an estimate that is the best according to some criterion. 

We want a transitive means of ranking estimates so that we can determine which estimate 

optimizes a certain decision function. The following axioms are used to determine the exact form 

of that decision function, while requiring that function to be independent of the data. Let f(I; q) 

be the estimates provided by maximizing some function H with respect to the available data 

I(y; X ) given some prior model q. Below, we refer to f(I; q) as the ‘posterior’ (or ‘post-data’). 

The five axioms are: 

A1. (‘Best’ posterior: completeness, transitivity, and uniqueness). All posteriors can be 

ranked, the rankings are transitive, and, for any given prior and data set, the ‘best’ 

posterior (the one that maximizes the decision function H) is unique. 

A2. (Permutation or coordinate invariance). Let H be any unknown criterion, and f(I; q) 

be the estimate obtained by optimizing H subject to the information set I (data) and prior 

model q. For , a coordinate transformation, , ,I q I qf f . (This axiom states 

that if we solve a given problem in two different coordinate systems, both sets of 

estimates are related by the same coordinate transformation.) 

A3. (Scaling). If no additional information is available, the posterior (inferred quantity) 

must equal that of the prior model.11 

A4. (Subset independence). Let 1
I  be a constraint on f(x) in the domain  x B1 Let 2

I  be 

another constraint in a different domain x B2. Then, we require that our inferential 

method yield 
1 1 2 2 1 2 1 2

B I B I B B I If f f  where f(B|I) is the chosen PADF 

in the domain B, given the information I. (Our estimation rule produces the same results 

whether we use the subsets separately or their union. The information contained in one 
subset of the data, or a specific data set, should not affect the estimates based on another 

subset if these two subsets are independent.) 

A5. (System independence). The same estimate should result from optimizing 
independent information (data) of independent systems separately using their different 

densities or together using their joint density. 

 

The following theorem holds for the information-theoretical method of inference. 

 

11 Following Skilling, this axiom is used for convenience only. It guarantees the units of the 

posterior are equivalent (rather than proportional to) those of the priors. If we use normalized 

probability distributions instead of PADF, this axiom is not necessary, but the proof becomes 
slightly more complicated. 
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Theorem 1. For the linear model y = Xp with a prior, and with a finite information set; the PADF 

(or set of PADF’s) that satisfy (A1–A5) and that result from an optimization procedure (with 

respect to the observed data) contains only the information-theoretic Maximum Entropy.  

Proof. See Shore and Johnson (1980) or Skilling (1988,1989), and Golan and Perloff (2002) for 

the generalized version.12 

 

 

 

12 Golan and Perloff (2002) showed under what axioms the decision function is the Rényi 

generalized entropy (or the Cressie-Read) and the axioms under which the decision function is 

the Tsallis generalized entropy. That paper also extended the axioms for modeling problems with 
more uncertainty and flexible constraints. 
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