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Abstract 

In this study we develop measures of the potential value of information with an 
emphasis on observed information – data. Though value is a relative concept, 
developing approximate and applicable measures is essential. Such a measure (or 
set of measures) allows us to evaluate the potential value of public and privately 
available datasets, and the value of accessing each. There are several benefits to 
having such measures. First, providers of data can perform a cost-benefit analysis. 
Second, policy makers can better determine the benefits of different data when 
deciding whether to invest in its collection, production and release. The proposed 
measures are derived from information-theoretic principles as well as other 
statistics, in conjunction with relative measures based on semantic arguments. 
These measures are functions of  attributes that can be aggregated into three basic 
blocks: (i) data reliability, integrity and accuracy, (ii) data quality, and (iii) 
potential value. We provide detailed empirical examples applying these measures 
to three data sets, each of which is different in context, size and complexity. 
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1   Introduction 

Individuals, researchers, and policy makers need information to make informed and educated 
decisions. These decisions are improved if the information used is of high quality, and if the 
inferential approach used to transform the information into knowledge and decisions is efficient 
and logical. In this work we concentrate on the first issue: the quality of information and its 
value. Our emphasis is on observed information: data. Unlike much of the literature on the 
quality and access to data, we are interested in building a set of complimentary measures to 
evaluate the potential value of data. It is somewhat like the ‘option value’ of the data. We define 
the potential value as the overall value that society may obtain from a certain dataset, assuming 
all the information and knowledge embedded in that data are extracted. It is not a value based on 
past use of the data, but rather the complete potential of that data, if indeed it materializes. The 
potential value of data is based on its quality, and on the meaning of the informational content in 
the data under different contexts. These measures are independent of the inferential approaches 
used (or to be used) when converting the information in the data into knowledge. 

The motivation for this work is both philosophical and practical. The philosophical one is  
a special case of the more abstract approach for dealing with information and its value (see Dunn 
and Golan, 2021 and the references provided there) that concentrates on the value of observable 
information used for inference and decision making. The practical motivation stems from the 
need for a simple and applicable way of evaluating the potential of new and existing datasets. 
This need has been underlined recently by policy makers who require federal agencies to collect, 
develop and produce data for public use. The tools, however, for such evaluations are yet to be 
defined and developed. In this paper, we propose such measures and tools. 

Federal agencies collect and produce data. These datasets provide the needed information 
used by public and private researchers, practitioners, and decision makers. These data are often 
variations of restricted use data and are only made available when conditions for protecting 
identifying information are met. The dollar cost of such data (for purchase and collection) is 
known or can be easily assessed and calculated. The cost of protecting these data – including 
storing and maintaining their integrity and confidentiality – are also known or can be 
approximated. But the real value (or potential value) of these data to society, researchers, and 
policy makers has yet to be defined or determined. This is not an easy task as data and 
information are special goods. In addition, their values – as any value – are relative. Assessing 
their full potential value is quite complicated, but necessary for fully understanding their 
importance to society.   

In this study we develop an approach for evaluating the approximate potential value of 
datasets (including those that are publicly available) and the value of maintaining public access 
to these datasets. The measures we propose are applicable, interpretable, and relatively easy to 
compute and evaluate. We test our measures using simple ‘toy’ data and two distinct datasets 
provided by the Economic Research Service of USDA. Throughout this paper we treat the 



 
 

3 

concept of value as potential value. It is the complete (long-term) potential of a data set; not just 
what it was used for in the past. Figuring out the potential value of data will also allow for 
comparison of datasets which, in turn, will facilitate more accurate cost-benefit analyses of these 
products. From now on (unless otherwise specified) the word ‘value’ means potential value as 
defined above.  

In the next section we briefly define and discuss the concepts of information, data, and 
value. We then touch on the notion of relative vs. absolute value and relate it to the value of data. 
In Section 3 we provide a brief summary of existing literature on the value (not ‘potential’ value) 
of data and information. In Section 4 we summarize our basic building blocks for measuring the 
potential value of data. We also define and discuss the notion of, and inter-relationships between, 
meaning and context, and the way they impact value. In Section 5 we develop and discuss the 
measurable quantities we use, including information-theoretic measures. In Section 6 we define 
the complete set of attributes we use to evaluate datasets, which  include measures based on the 
semantics and meaning of the information. In Section 7 we define our proposed measure of the 
potential value of data (including public data), which is an aggregated measure of the attributes 
defined in Section 6. In Section 8 we provide a detailed example using a small dataset dealing 
with social media and new movie release buzz. The following two sections provide two 
additional case studies using medium and large sized datasets. In Section 11 we provide a 
graphical comparison of value, quality and attributes, across these three datasets. In Section 12 
we discuss the value of access to these data. In Section 13, we comment on the monetary value 
of the proposed value measure. Finally, in Section 14 we provide concluding remarks and a short 
list of open questions. The Appendix provides detailed tables from the case studies, a breakdown 
of how the respective datasets were evaluated using the attributes discussed in Section 6, and an 
outline of the software used, and codes developed, to produce the different information theoretic 
and other measures.   

2   Information, Data and Value 
In their work on information and its value, Dunn and Golan (2021) write that information may be 
defined (though somewhat circular) as anything that informs us. From a decision making and 
inference point of view, being informed means a certain input – objective or subjective – enters 
our decision process and affects our inference and decision. We take the same view here. We 
also take the view that, in general, information is true and is not intended to be false, though it is 
frequently noisy and imperfect, and its meaning may be subject to interpretational and processing 
errors. On a more practical level, information may be thought of as this ‘thing’ that provides us 
with the means to reduce the bounds of uncertainty about possible outcomes. It is this ‘thing’ that 
informs us; it puts us in the condition of “having information.” But “having information” is a 
weaker notion than having knowledge, or even beliefs. We can have information because we 
observed something, were told something, or even because it is in a document we were given. 
This does not mean that we really know what the information is or that we understand it. 
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However, even though having information is not the same thing as having knowledge, 
having information may end up contributing to one’s stock of knowledge; however, measured 
and of whatever quality. For the applied researcher who is interested in modeling, inference and 
learning this means that information is anything that may affect one’s estimates, the uncertainties 
about these estimates, or decisions. It is “meaningful content.” 

In this work we are interested in observed (hard) information, known as data. Our 
evaluation of that data is based on the premise that these data are used, by all possible users, for 
decision making and inference to convert it into knowledge. In fact, it is the potential inferred 
knowledge, conditional on the data, that we care about. But it is independent of the inferential 
approach. 

2.1 Absolute vs. Relative Value 
In Section 6 we discuss the main applicable attributes that we believe determine the value of 
data. Before we do so, it is necessary to highlight the fundamental issue of ‘relativity’ that must 
be discussed when assessing the value of data. This issue deals with the concepts of objective vs. 
subjective, intrinsic vs. extrinsic, and absolute vs. relative. Broadly speaking the first two are 
special cases of the latter. Subjective value is relative to the person making the value judgment. 
Extrinsic value is relative to something outside of the thing being valued. These distinctions may 
be applied to both the user of the data and the dataset itself. Since the last pair includes the others 
as special cases we briefly discuss the notions of relativity and subjectivity. 

The different attributes that determine the value, whatever they are, are all relative to the 
decision maker, or the user. To mathematically show that the value of information is relative, or 
subjective, it is sufficient to provide the following argument. If at least one factor that determines 
the value of information is relative (subjective), the value of information must be relative 
(subjective) as well. Stating this differently, there is no unique way of defining a relatively 
(subjectively) based absolute value of information. 

We can also think of this in a different way which is similar to deciding on the value of 
life. See for example, the critical review of Viscusi and Aldy (2003). The value, for example, 
that we put on our lives as individuals is far different from that of the insurer, the actuarial or the 
government. If there exists a dataset that will allow a doctor to cure someone’s disease, they (and 
their family) will be willing to, theoretically, pay any amount for this. Others that do not have 
that disease will be willing to pay much less, or even nothing.  

We argued above that the value of data is subjective and relative. It is not objective; It is 
not unique. It is relative to other information and the user, and it is subjective to the decision 
maker – the user. For a detailed discussion, see for example, Dunn and Golan (2021) . We 
complete this discussion by logically showing that an absolute value of data cannot be 
subjectively based.  

Define users’ preferences over the datasets. As with all preferences, they are subjective. 
We require the following properties from an objective, or absolute, value-of-data function: 
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A1.  Individual preferences are complete (any pair of datasets can be compared), transitive 
(trivial) and reflexive (any information/data set is at least as good as itself). The value-of-
data measure should satisfy the same properties. 

A2.  If everybody prefers dataset X to Y, then the value-of-data measure should rank X ahead 
of Y. 

A3. The preferences between datasets X and Y should depend only on the way individuals 
rank X vs. Y, regardless of how they rank other datasets. 

Following directly on the classical Arrow’s Impossibility Theorem, (Arrow, 1963; 
Fishburn, 1970) it is trivial to show that if a value-of-data measure satisfies properties A1 – A3 
and the set of users is finite, then it must be a ‘dictatorship’ or an expert opinion (all value-of-
data rankings are rankings of a single user – the expert or the dictator). Under the above three 
requirements on users’ preferences, there is no unique way of defining the “absolute” value of 
data (that is subjectively based). Even if this unique way is an expert opinion, it does not resolve 
the basic issue here: a single intrinsic (or objective, or absolute) value of information, that is free 
of the users’ preferences, cannot be based on subjective evaluations. Though this argument 
shows that an objective value of information cannot be subjective based, there are a few trivial 
(uninteresting) exceptions. First, if all users have the same preferences toward the value of all 
datasets. Second, all experts value all datasets similarly (and consistent with all other potential 
users).  

3   A Brief Summary of the Current Literature 

The study of the value of information has a long history in both the philosophical and the social 
science literatures. The former is much more theoretical while the latter is typically empirical. 
We discuss both with an emphasis on the way value has been dissected into types – especially 
within the economics literature – and how these types relate to datasets. 

Often the definitions of value (of information) have been contextualized with concepts of 
communication and understanding (Dretske, 2008), or are grounded in decision making (Gould, 
1974). With this in mind, economists have generally defined three main types of value: use, 
existence, and option. Use value can be defined as the current value directly gained from 
receiving a good or a piece of information. For users of government data, for example, the value 
of this public good comes from the direct gain of any subsequent understanding, knowledge, or 
analyses. Existence value, on the other hand, captures additional value associated with knowing 
that, for example, a rare ecosystem, species (Davidson, 2013) or even dataset merely exists 
(Krutilla, 1967). This type of value can also be intuitively described as “passive” use value 
(Carson, 2012).  

The third general type of value is option value, which is defined relative to the concept of 
potential and uncertainty. It can be categorized into different subtypes: real option value (Dixit & 
Pindyck,1994), quasi-option value (Arrow & Fisher, 1974), or, simply, option value (M. W. 
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Hanemann, 1989). Real option value is the value associated with the timing of an investment or 
decision given learned information about its risk and returns. Quasi-option value, on the other 
hand, is the value of learning from the postponement of a decision (Mensink & Requate, 2005; 
Traeger, 2014). More relevant to the context of value and potential value of data is option value. 
A common example of option value is the existence of a public park. Even if a local resident has 
no immediate intention of visiting it, they may still feel as though they benefit from having the 
option to potentially do so in the future.  

The types of values defined above can often be difficult to conceptualize and interpret 
without a numeric or monetary representation. The contingent valuation method is arguably the 
most practical tool for indirectly estimating the monetary equivalent of existence and option 
value (Brookshire, 1982; Carson, 2012; W. M. Hanemann, 1994). This method uses carefully 
crafted surveys to illicit either an individual’s maximum willingness to pay for, or minimum 
compensation needed to give up, a good (Carson & Hanemann, 2005). Respondent’s willingness 
to pay can then be collectively used to estimate society’s value (Ciriacy-Wantrup, 1947) of, for 
example, a publicly available dataset. Contingent valuation surveys are not, however, limited to 
valuing public goods. These surveys are often designed to gauge the value of individual health 
and risk, and collective results are used to calculate value of life statistics (Kip Viscusi, 2014; 
Lanoie et al., 1995; Magat et al., 1988). The contingent valuation approach is not without its 
critiques (Carson, 2012; Diamond & Hausman, 1994; Hausman, 2012). Aside from assumptions 
regarding the quality of surveys, their ability to illicit accurate responses and the quality of 
respondent data, contingent valuations are arguably dependent on perceptions and preferences 
rather than, for example, the informational content of a resource or good.  

These definitions provide different perspectives on value and guide subsequent 
approaches to measurement. However, they cannot be directly, and consistently, applied to 
assessing the full (potential) value of datasets or publicly accessible datasets. Like any publicly 
available information, these datasets are nonrivalrous and nonexcludable public goods. When 
made accessible, digital data inherently meet these criteria as they can be simultaneously used by 
various people, firms, and organizations without affecting their quality or value. In Repo’s 
review (1989) of the valuing of information literature, discussion on information in the form of a 
public good is limited. We believe it is because of the unique challenges of that ask. Dunn and 
Golan (2020) highlight the most prominent of challenges: differences in how data users value 
information. In particular, individuals, organizations and societies value information, and 
subsequently data, differently. These differences make measuring the total value of public data 
particularly difficult, especially in comparison to private information or traditional public goods. 
It would be quite challenging to identify, yet alone consistently quantify and disentangle, the 
denumerable ways in which data are valued by the universe of beneficiaries.  

Other disciplines outside of information and communication sciences have proposed 
alternative theoretic approaches to valuing information. The economics literature, for example, 
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has developed models to explicitly consider information markets, and, in turn, the monetary 
value of data (Bergemann & Bonatti, 2019). As summarized by Veldkamp & Chung (2023), the 
macroeconomic literature, in particular, has incorporated the use of public data into its growth 
models. Jones and Tonettti (2020), Farboodi & Veldkamp (2022) and Freeman et al. (2023) all 
propose theoretical frameworks that depend on, or acknowledge, particular characteristics of data 
and data usage. These characteristics include the nonrivalry of digital data, the potential for data 
to depreciate, incentives for protecting data, and the heterogeneity of data usage in the private 
sector. Although interesting and novel, these theoretical models are context specific. Resulting 
valuations are also dependent on the economic influence of the data or the value of data-
informed choices, not the actual content of the data.  

On the empirical front, valuations of public data do exist, but these are either relative to 
alternative choices or counterfactual scenarios, or are reliant on the ability of the data to reduce 
uncertainty about certain preidentified outcomes. Hughes-Cromwick and Cornado (2019) 
provide a nice review of the innovative ways in which, for example, the private sector use and 
value public data. Outside the private sector, resource and environmental economists have built a 
robust literature on valuing public resources and the value of data used for their preservation. For 
example, Macauley (2006) and the Council on Food, Agriculture and Resource Economics (C-
FARE) (2013) have each outlined a framework for empirically measuring the value of public 
goods and datasets, but these valuations are context dependent and do not capture potential value 
outside the scope of a particular application. The National Aeronautics and Space 
Administration’s VALUABLEs initiative has also recently provided a variety of empirical 
analyses valuing different types of data. As part of this initiative Stroming et al. (2020), for 
example, show how public satellite data can be used for environmental impact assessments. 
These assessments are then used to quantify the socioeconomic value of publicly available 
satellite data but are only relative to potential policy outcomes.  

The computer science and engineering literature has, however, focused on measuring the 
quality (and part of the value) of data based directly on its content. The most common approach 
to doing so begins with appropriately defining a dataset and its characteristics (Gebru et al., 
2021; Holland et al., 2018; Tufis ̧ et al., 2020). The quality of these characteristics, or “facets”, is 
measured using a predefined criteria and then mapped to a relative value (Kannan et al., 2018). 
The choice of “facets”, the relative importance or weighting of these “facets”, and the mapping 
method used to produce a valuation from these “facets” are, however, arguably subjective. 
Alternative approaches using standardized predicates for measuring data quality have been 
proposed (Bronselaer et al., 2018; Kaiser et. al., 2007). Though that approach may be the closest 
to our objective, these innovative alternatives are also based on inference of the data (an 
undesirable property for our valuation) and have yet to reconcile the subjective transformation of 
data quality to potential value. 
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4   Potential Value of Data – The Basic Building Blocks 

We now summarize the basic ideas and building blocks of our proposed value measure. We want 
our measure to satisfy a minimal set of requirements (attributes). We organize these requirements 
as three hierarchical building blocks, each containing several attributes. Some of these attributes 
are measurable and can be objectively quantified. Others are qualitative or ordinal and at times 
subjective, and some are fuzzier. 

At the bottom of the hierarchy is the first building block: Data Reliability, Integrity, and 
Accuracy. It comprises measures identifying the basic attributes of the data, including basic 
statistics. The second building block is Data Quality. It comprises objective and quantitative 
measures as well as more complex attributes related to the meaning and semantics of the data. 
The third building block, at the highest level, is the Value of Data – or more specifically, The 
Potential Value of Data. It comprises the first two building blocks as well as other relative 
(subjective) attributes related to meaning and importance. That last part is the most complicated, 
as we must use meaning to evaluate value, but for ‘meaning’ we need a context.  

We use the word meaning to capture the notion of what one intends to convey especially 
by language: the thing, action, feeling, idea, etc. that a word or words represent. This meaning is 
also affected by the context – the circumstances that form the setting for an event, statement, or 
idea, and in terms of which it can be fully understood and assessed. Pragmatically, meaning and 
context are interrelated (Nouraldeen, 2015). The more information that is embodied in the 
context, the less words (or linguistic utterances, as linguists describe this) are needed. 
Consequently, information from both context and the words themselves simultaneously produces 
meaning (Johnson, 1974). To relate this to the more linguistic, philosophical, and information-
theoretic literature, rather than ‘meaning,’ often the word semantics is used, which implies 
relating to meaning in language or logic. 

Within our objective of assessing the value of data, the context may change with the user, 
time, and the state of nature (say the state of the economy, politics, etc.). Consider for example, a 
dataset summarizing farms’ production in the Midwest. The context in this case describes the (i) 
dataset (crops, inputs, region, period, etc.), (ii) any additional related information if such exists 
(say, demand for the crop, technology, or water supply), and (iii) the user (say, researcher, policy 
maker, private firm, or the USDA research specialist). Within that context, we have the potential 
set of questions the data may shed light on. Think of the subset of questions related to the 
production process. For the researcher, a question of interest may be the exact structure of 
production and its relative efficiency. For the policy maker a main question may be whether 
there are some economies to scale that created a monopolistic power that demands regulation. 
For the USDA specialist, the interesting question may be water efficiency, quality of the soil and 
minimum pollution. In each one of these cases, the potential value is attained in the context-
question pair. 

https://www.macmillandictionary.com/us/dictionary/american/action_1
https://www.macmillandictionary.com/us/dictionary/american/feeling_1
https://www.macmillandictionary.com/us/dictionary/american/idea
https://www.macmillandictionary.com/us/dictionary/american/word_1
https://www.macmillandictionary.com/us/dictionary/american/word_1
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Figure 1. Basic Building Blocks 

 

But how should we put value, and potential value, on this pair? The value is relative to 
the context (possible questions and users) and the environment of that context. The overall 
potential value depends on the particular contexts (the state of nature together with the existing 
and potential user questions), or the universe of these particular contexts. Similarly, the value can 
be thought of as an ‘option value,’ or the perceived potential impact of that data. 

With the above in mind, the overall structure is as follows. We require the Reliability 
block to exceed a minimal level. Otherwise, the data may be unusable. The exact minimal level 
depends on the potential use of the data. Conditional on that, the Quality block is calculated. If it 
satisfies our desires, we calculate the potential value according to the Value block. Keeping in 
mind that data are scarce resources, however, most often it is impractical and illogical to provide 
these minimal thresholds. This is because we want to use the data we have, regardless of its 
quality. But we should always calculate and evaluate the Reliability and Quality blocks, as part 
of the measures that approximate the value. 

Although values are relative measures, at times one can normalize those in such a way 
that comparisons across datasets (in certain contexts) is possible. Assuming this is done, the last 
major question left is how to convert that value to a monetary one. This is discussed in Section 
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13. In the next section we define the less familiar quantitative measures, most of which emerged 
from information theory. We then discuss the attributes and measures used for each one of the 
three building blocks. 

5   Measurable Quantities – Basic Definitions 

We start with measurable quantities that emerged from information theory. We then discuss two 
more measures. 

5.1 Information Measures 

Information and Entropy of a Single Random Variable 

The entropy (Shannon, 1948) is the expected information content of an outcome of a discrete 
random variable X whose probability distribution is P: 

2 21 1

1( ) log logK K
k k kk k

k

H P p p p
p= =

≡ = −∑ ∑      (1) 

where k is the number of events, and with ( )2logx x  tending to zero as x tends to zero, or simply, 
take ( )2log 0k kp p ≡  if 0kp = . Entropy is a function of the probability distribution P and not a 

function of the actual values taken by the random variable. Therefore, entropy is free of 
semantics (meaning) of the information. In other words, the entropy of a random variable would 
remain the same if the variable’s outcomes changed, but the number of outcomes and 
distribution did not.   

Looking at the above definition it is clear that the entropy is a relative number (between 
zero – perfect certainty – and log(K) – maximal uncertainty). However, it can be normalized 
such that systems of different dimensions and variables can be compared (Golan, 1988). The 
normalized entropy is 𝑆𝑆(𝑃𝑃) = 𝐻𝐻(𝑃𝑃)/ log2(𝐾𝐾), where 𝑆𝑆(𝑃𝑃) ∈ [0,1]. This measure provides an 
overall idea of the information contained in the data (but not about the meaning of that 
information). Note that from now on, rather than using log2  we will use the notation log (and in 
practice we will use the natural log). 

Information and Entropy of Multiple Random Variables  

Let X and Y be two discrete random variables with possible outcomes 1 2, ,..., Kx x x  and 

1 2, ,..., Jy y y  respectively and ( ),P X Y  be their joint probability distribution. Define 

( ) ,k kP X x p= ≡  ( ) ,j jP Y y q= ≡  ( ), Y ,k j kjP X x y w= = ≡  ( ) ( ) || |k j k jP X Y P X x Y y p= = = ≡  , 

and ( ) ( ) || |j k j kP Y X P Y y X x q= = = ≡  (with “|” standing for “conditional on”), where 

,k kjjp w= ∑  j kjkq w= ∑  and the conditional probabilities satisfy = =| |kj j k j k j kw q p p q .. The 

joint entropy of X and Y is 
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( ) 2 2
, ,

1, log log .kj kj kj
k j k jkj

H X Y w w w
w

≡ = −∑ ∑                  (2) 

As shown previously, this measure can also be normalized to the zero – one range. 

The conditional entropy ( )|H X Y  is 

  
( ) | 2 | 2 2

,

| log log logkj kj j
j k j k j j kj

j k j k k jj j kj

w w q
H X Y q p p q w

q q w

       
= − = − =       

         
∑ ∑ ∑ ∑ ∑

,       (3) 

which is the total information in X conditional on Y having a certain value jy  ( )jY y= . 

The interrelationship between entropy and joint entropy is embodied by the chain rule for 
entropies (the entropy of a composite event equals the sum of the marginal and conditional 
entropies): 

( ) ( ) ( ) ( ) ( )| |,H X Y H Y H X Y H X H Y X= + = +  .        (4)  

If X and Y are independent ( )kj k jw p q= , then ( ) ( )( ),H X Y H X H Y= + .  

So far, we have discussed the concepts of joint, marginal, and conditional entropies. 
Using these quantities, we now define the reduction in uncertainty of X due to our knowledge of 
Y. The amount of information contained in a random variable X about another random variable Y 
is called the mutual information between these two random variables: 

( )
,

( ; ) ln || ( ) ( | )
k

k

kj
kj kj j

k j j

w
I X Y w D w p q H X H X Y

p q
≡ = = −∑   (5) 

where ( )||
kkj jD w p q  is the relative entropy (known as the Kullback-Leibler divergence) 

between two probability distributions, and ( ; ) 0I X Y ≥  with equality if and only if X and Y are 
independent. It is the marginal additional information the observer analyzing X gains from 
knowing Y . The mutual information is the relative entropy between the joint distribution, kjw , 

and the product of the marginal distributions, 
k jp q : ( )||

kkj jD w p q . In general 

( ; ) ( ) ( | ) ( ) ( | )
( ) ( ) ( , )

I X Y H X H X Y H Y H Y X
H X H Y H X Y

= − = −
= + −

                    (6) 

where ( ; ) ( ; )I X Y I Y X=  and ( ; ) ( )I X X I X= . 
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A basic interpretation of the above quantities is that having additional information from 
another correlated random variable reduces the uncertainty we have about our original random 
variable. Conditioning reduces entropy (and increases information) for dependent random 
variables. We use these measures, in conjunction with correlation measures, to identify 
dependence properties and quality of the data. 

Data Integrity: Entropy Convergence or Cumulative Entropy 

Cumulative entropy is another diagnostic used to test data integrity. It is used in a variety of 
disciplines to test for the convergent behavior of populations (Edwards & Tuljapurkar, 2005; 
Talaat et al., 2020). We adjust it for our needs. Following equation (1), the entropy of a random 
variable is cumulatively and sequentially calculated starting with the first two observations, then 
the first three observations, and so on. The data, however, need not be ordered. (For continuous 
random variables we use the approximate discrete distribution.) The cumulative entropy of well-
behaved data is expected to exhibit a converging behavior as the number of data points increases. 
If, instead, this entropy keeps fluctuating as additional observations are considered, there may be 
issues with the integrity of the data. For example, think of the binary variable Female/Male. Say, 
the first 10 values are: F, F, M, F, F, M, M, M, M, F. Using log base 2, the ‘cumulative entropies 
are: 0.00, 0.00, 0.92, 0.81, 0.72, 0.92, 0.99, 1.00, 0.99, 1.00. That is, the entropy converges to 
one which captures the fact that the number of females and males is practically equal for the 
complete sample. 

Data and Information Compression: The Shannon Limit 

The Shannon limit is the maximum possible compressibility of bits (1’s and 0’s) of information 
without loss of information – the exact meaning of the data remains unchanged. Compression of 
information eliminates redundancies by reducing the number of bits needed to describe the 
informational content of the data. Technically, it reduces the number of bits describing the 
informational content in a data set to a minimum. One can view the Shannon limit as a good 
proxy for the amount of nonredundant information contained in a dataset. Or even better, the 
level of predictability the data may provide. 

Consider the following example. We want to transfer a very large data set between users. 
Since the dataset is very large, we first want to compress it to its ‘limit’ without any loss of 
information. But what is that limit? Let the original dataset be of N bits (0’s and 1’s). Assume 
that out of the N bits, there are K 1’s. Thus, the number of ways to express the information is the 
multiplicity:  

( )! ! !W N K N K= −              (7) 

We want to compress that amount (W) as much as possible without loss of information 
(lossless compression). We are looking for 𝑍𝑍 ≤ 𝑁𝑁 bits, defined as the minimal number of bits 
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that still contain the same information as in the original dataset with N bits. To find Z, let W=2Z 
and then calculate Z=log2(W) from the above equation. Using the Stirling’s approximation, we 
specify it in terms of entropy as   

( ) ( ) ( )ln 2 ln 1 ln 1Z N π π π π= − + − −   ,                (8) 

where 𝜋𝜋=K/N. The value Z is called the Shannon limit. For all non-uniform distributions 
( )0.5π ≠  Z<W.  For further discussion and examples see Golan (2018).  

 This measure is often expressed as a compression ratio, which is the uncompressed size 
(N) divided by the compressed size (Z). It can also be expressed in terms of space savings which 
is just one minus the ratio of Z to N. The Shannon limit is a ‘lossless’ compression measure: it 
maintains all of the information in the data. As such it is not expected to exceed a ratio of 
approximately 2. A lossy compression – a compression with loss of information – may exceed 
that ratio, but it is outside the scope of our interest. 

5.2  Other Measures 

The condition number measures the degree of multicollinearity among exogenous variables in 
regressions such as ( )1, ,  Kf X X= …y , where y is an N-dimensional vector (N observations) and 

X is an N K× design matrix with K variables. 

A simple measure of singular values for measuring the degree of multicollinearity in data 
(Belsley, 1991) is:  

  1'
K

X X


 


 ,      (9) 

which is the ratio of the largest ( 1 ) and smallest ( K ) singular values of X (with column scaled 
to unit length). If the design matrix X is orthogonal (the K variables are linearly independent of 
each other), then 1i   for all i=1,…, K and 1 . As the degree of collinearity increases the 
condition number goes to infinity. If it exceeds approximately 900,  the collinearity level is 
considered harmful for the inference. (Note that some statistical software report the square of the 
condition number.) 

 We use it here to investigate the level of multicollinearity in the data. It complements 
some of the multi-variable information theoretic measures discussed previously. 
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Data Integrity: Benford’s Law 

We use this law for confirming the data integrity. Benford’s Law is a natural law about the 
distribution of digits of almost any numerical data. It describes the frequency distribution of the 
first (or other) digit of numerical data that are not dimensionless. These are numbers that carry 
dimensions (such as measurements), yet a universal law (independent of the units of 
measurement) for the distribution is scale free. Abidance to this law is often used as a diagnostic 
to test the integrity of data (Judge & Schechter, 2009). We apply it here for the first non-zero 
digit of the data. Higher order (say 2nd, 3rd, etc.) digits can also be calculated and tested.  

Let D be the leading (first) digit. To make it scale free, we let the logarithm of the 
numbers be uniformly distributed. Then the probability distribution of D for integers between 1 
and 9, known as Benford’s law, is: 

( ) ( )
1 10

10 10 10
1

1( ) log 1 log log
D

D

Ddx dxp D D D
x x D

+ + = = + − =   ∫ ∫            (10) 

and by “scale free” we mean that scaling D by a factor C results in a proportional scaling of 
( )p D . Note that the probability distribution ( )p D  is proportional to the space between D and 

1D +  on a logarithmic scale (power law). 

Benford’s law states that we observe the number 1 as the first digit approximately 30% of 
the time, while larger numbers are observed as the leading digit with lower and lower 
frequencies. This phenomenon happens irrespective of the unit of measurement and is scale 
invariant. We can test it in a simple way by applying the information-theoretic maximum entropy 
procedure (Jaynes, 1957) with the geometric mean: ( ) ( )9

1
logg D

D p Dµ
=

=∑  where gµ  is the 

geometric expected value. The optimization problem (where the Shannon entropy is defined over 
the D’s) is then: 

{ }
( ) ( ) ( )

( ) ( )
( ) ( )

9

1

log

 

log

1, 0

DP

g D

D

Maximize H P p D p D

subject to

D p D

p D p D

µ
=

= −

=

= ≥

∑

∑
∑

      (11)  

and the solution is ( ) D
p D D Dλ λ− −= ∑  where the exponent λ is the Lagrange multiplier 

associated with the geometric mean constraint. Differences between the ‘true’ Benford’s Law 
(Eq. 10) distribution and that derived via the maximum entropy procedure are indicative of 
potential abnormalities in the data. See Golan (2018) for more derivations and examples using 
Benford’s Law. We note that Benford Law should not be used for studying data that do not span 
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at least a small number of magnitudes, say individuals’ heights. We use this measure to 
investigate the integrity of datasets. 

6   Attributes 

The attributes used to evaluate the value of data are summarized for each one of the basic blocks 
described in Section 4. Figure 2 illustrates each basic block and the attributes within that block.  

Figure 2. The Basic Building Blocks and their Attributes 

 

Basic Block 1: Data Reliability, Integrity and Accuracy  

A) A full description of the data, sources, etc. 
B) Completeness (of observations and variables). That measure takes three possible labels: 

Perfect (no missing information), Sufficient (there is some missing information, but it 
does not impact our knowledge, say not observing the zip code of an address), and Bad 
(essential information is missing). In most cases, detailed summary statistics (including 
missing values, and other problems) are suitable enough for evaluating this attribute. 

C) Variation in the data (A basic summary of the variations, including entropy, normalized 
entropy, joint entropy, mutual information, and the coefficient of variation: standard-
deviation/mean,). 
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D) Integrity. (Benford’s Law and the entropy convergence – cumulative entropy.) 

The Score (Total): ‘Yes’ (the data passed the minimal requirement) and ‘No’ (these data are 
worthless). This measure does not enter in the final tally of the overall value. 

Basic Block 2: Data Quality  

A) Completeness (of data as a whole: This is a theoretical concept with respect to the 
questions the dataset is supposed to be able to answer, whenever the questions preceded 
data collection, or with respect to how the data intend to be used). (1 – 10, with 10 
complete). 

B) Size (Number of observations and number of variables; This is an informative attribute 
that, together with other attributes, has an impact on the quality).  

C) Documentation: do all proper documents about the data exist and are understandable? (0 
– 2; no documents (0), some/all and partially understandable (1), perfect (2)). 

D) All variables are defined correctly, including their units and meanings. (Each variable has 
a scale of 1 – 3, (not good) to perfect). Overall, the total normalized value: 3K/3K = 1. 
(This ensures that the total is in 0 – 1 and comparable across datasets.) 

E) Are the data representative (with/without weights) of the underlying population (Yes (1) 
– No (0), sampling issues: Description). 

F) Do we trust the data collected, the way it were collected, and the agency/individuals that 
publish the collected dataset? (Trust: 0 – 1, Collect: 0 – 1, Agency: 0 – 1).  

G) Believability (this complements E and F above). Yes (1) – No (0). 
H) Interpretability: Is it possible to provide coherent, logical, and consistent interpretation of 

each one of the variables (and for the resulting potential inference)? (Yes – No for each 
variable). Overall, the total normalized value: K/K = 1. (This ensures that the total is in 
the range 0 – 1 and comparable across datasets.) 

I) Age:  
1. Age of the dataset availability (first date these data are available); using a 

discount factor from that date. The current year has the highest value of 1, then a 
discount factor for each previous year. 

2. Age of the data in the dataset (the most recent date of the main variable/s of 
interest); using a discount factor from that date; same scale as I1). 

The discount factor can be any positive number between 0 – 1 that is deemed 
reasonable or appropriate so long as it is consistent between datasets.   

J) Accessibility: how easy it is to access the data, manage and manipulate it (1 – 5 
(easiest/best)). 

K) Heterogeneity – Does the dataset capture (approximately) the full heterogeneity of the 
underlying population. Yes (1) – No (0). 

L) Data Dependencies (Condition number to capture the level of collinearity,  1 – 3: low (3) 
– very high (1), Correlation low (3) – very high (1)). Low values of collinearity and 
correlation are indicative of more information thus given higher scores.  
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M) Data Predictability and embedded information in the data. We use Shannon limit to 
provide an approximate notion of the non-redundant information in the data. This is a 
good proxy for the potential quality of prediction, but not how to do it. (See Golan, 2018, 
Chapter 3 for discussion.): scale 2 – 0, with  2 (compression ratio of about 2), 1 
(compression ratio of about 1.5), 0 (compression ratio of about 1).  

The Score (Total): Maximal value: 29 + Discounted Age of Data and Dataset (Criteria I)  

Basic Block 3: Potential Value  

A) Purpose and meaning of the data (Summary – in words). 
B) Semantics and meaning: All the possible mutually exclusive types/families of questions 

that we can answer with these data given our current information and knowledge. See 
discussion of context and meaning in Section 4. (Scalar). Note that there are possibly 
different meanings under different contexts. Scale: 1 – 10 with 10 the highest. This is a 
relative measure based on the data user’s subjective understanding. If there is more than a 
single user, the median of all users should be used. 

C)   
1. Importance of questions to society. (Scale: 1 – 10 with 10 extremely important). 

Note, this is subjective and context dependent. (See discussion in B above.) 
2. Are some of the questions we can answer important for private entities? (Yes – 

No; If Yes scale 1 – 10 with 10 extremely important). 
D) How many observations of extreme events are in the data? Scale: 0 – 𝚽𝚽. Calculation of 

𝚽𝚽: the number of observations more than 3 standard deviations (sd) from the mean plus 
the number of observations between 2sd and 3sd from the mean multiplied by 0.5. 

E)   
1. Is there a clear deterministic observed structure (story) in the data? (A description 

– no scale/weight).  
2. Is there information in the data that will allow potential studies of cause and 

effect? (Yes (1) – No (0)) 
F) Can we answer questions that we could not answer previously? (Yes (1) – No (0); If 

‘Yes,’ How many?) Scale: 0 –  # Questions. 
G) Are the data timely (up to date)?  (Yes (1) – No (0)). 
H) For a repeated data, how fast are they published and made available for the users? (Scale: 

0 – 2, too slow (0), somewhat regular (1), fast (2)).  
I) Is the information (say, the variables) in repeated data consistent across time? (Scale: 0 – 

1). 
J) Do the data have the potential to shed new light on older questions-answers? (No – 

Maybe – Yes: 0, ½, 1). 
K) Is it a completely new dataset – a data set that no one has ever used?  (Yes (1) – No (0)) 
L) Size and representativeness of population affected. (Scale: 1-5 with 5 a large population 

is represented and effected). 
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M) Do the data present heterogenous information to properly answer questions? (No – 
Somewhat - Yes: 0 – ½ – 1; See also Quality block, J) 

N) Approximate measure of reduction in uncertainty from the new data. It is the approximate 
increase in our ‘knowledge about something’ conditional on the data (Yes – No; If yes, how 
much; normalized entropy and relative information – Kullback-Leibler divergence). Scale: 
normalized entropy 0 – 1, normalized relative information (0 – 1). Note: The Yes – No are 
absolute, but the ‘how much’ is relative. 

O) Data collection: experiment, administrative survey, or administrative/privately collected 
data? (Scale: 0 – 1 with all but private (1) and private (0)).   

P) What are the potential expected outcomes/inferences in the short-run (data specific) and 
those in the long-run. (Description, expected importance: 1 – 10). This is a relative 
measure. 

Q) Time horizon of resulting inferred outcomes, answers, and decisions. Scale: short (3), 
medium range (2), long range (1).) 

R) Does another ‘quite similar’ dataset exist? (Yes (1) – No (0)); If yes, can combining both 
will increase the joint value by more than adding the values of both: economy to scale. 
That is, new questions and dimensions open up a higher level of precision. (Note, 
combining datasets is super-additive in terms of the number of questions that may be 
asked. It increases quadratically, just like the number of possible correlations. See also U 
below.) Scale (if ‘yes’) 1 – 10 with 10 the highest value. 

Related Descriptive Attributes  

S) Data Additivity (linear, super additivity, etc.; Define ‘additivity’ here and its dimension 
(say – more observations, more variables, etc.). No scale – discussion in the paper. 

T) Size (number of observations vs. number of variables). Note that more observations may 
not increase the value as more variables. No scale/weight: this is a descriptive discussion, 
and the information is captured by other measures. 

The Score (Total): Maximal value: 68 + 𝚽𝚽 (from Criteria D).  

7   The Potential Value of Data 

Building on Section 6, the overall (relative) potential value of the data is the total sum of Blocks 
2 and 3. That value is accompanied by some descriptive discussions as is explicitly shown in the 
attributes’ specifications of the three blocks. It is important to consider the following when 
evaluating the potential value of a dataset:  

• It is not recommended to assign a certain value to Block 1 (Data Reliability, Integrity 
and Accuracy). However, it is important to look at the proposed attributes of that 
block and decide whether the dataset should be used. It is expected that the answer 
will be ‘yes’ to most available datasets. 
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• As emphasized earlier, all values are relative (see discussion of semantic and context 
as well as relativity and subjectivity). Though some of the proposed attributes can be 
perfectly calculated, some are relative to the evaluator. If more than a single evaluator 
assigns the attributes’ values, constructing the median (from values provided by the 
different evaluators) is recommended.  

• The total sum of our proposed measure is composed of the sum of the different 
attributes. Each one of these attributes has a finite and bounded value. If the number 
of possible values is finite, say Q, then, the value of each attribute is bounded by 2|Q|. 
Aggregation in that case is trivial.  

• Using the same evaluation scale provided here, and the same time discount factor, for 
different datasets, provides a ranking of these datasets even though these potential 
values are relative. 

8   Empirical Example 1: Movie Releases  

8.1 Description and Basic Statistics 

We now show the way some of the measures and attributes proposed can be implemented and 
interpreted using a (toy) simple dataset from Craig, Greene, & Versaci (2015). This dataset 
contains characteristic information on 62 movie releases, along with box office performance 
statistics and metrics characterizing online “buzz” about movies prior to their release. The data 
contain a combination of discrete and continuous variables, which are discretized in such a way 
that the resulting distribution approximates the original distribution. Table 1 details the variables 
included in this data set and Table 2 presents their summary statistics.  

 The set of potential questions is described in Table 4 that presents the different variables 
used for different models aims to answer a variety of potential questions (Part B in the potential 
value block above). 

Table 1. Description of Variables from Craig, et. al. (2015) 
Variable Description 

Opening Week Box Office Revenue ($USD) First run U.S. box office. 
Motion Picture Association Rating MPAA Rating code, 1=G, 2=PG, 3=PG13 and 4=R.  
Movie Budget ($USD in Millions) Movie’s production budget.  
Star Power (Index) Index created by Forbes magazine and published as part of its 

“Star Currency” list. The index ranges from 0 to 10 for each actor. 
The more famous the movie’s stars are, the higher the index. The 
Star Power variable is the sum of  indices among actors and 
actress in each movie.  

Sequel  1 if movie is a sequel, 0 if not.  
Action  1 if action film, 0 if not. 
Comedy  1 if comedy film, 0 if not. 
Animated  1 if animated film, 0 if not. 
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Horror  1 if horror film, 0 if not. 
Addict (Trailer Views) Trailer views at traileraddict.com. 
ComingSoon Website Comments The number of message board comments at comingsoon.net about 

upcoming movies. Note that comments can be both positive and 
negative. 

Fandango Votes Public attention at fandango.com in the form of voting 
participation (i.e., the number of people that partook in voting). 
Participants can vote that they either “Don’t care” for the movie or 
that they “Can’t Wait” to see the movie.  

Can’t Wait to See (Percent) Percentage of Fandango voters that can't wait to see a movie.  
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Table 2. Summary Statistics of Variables from Craig, et. al. (2015)  
       

Panel A.  
Discrete Variables  

Variable Mean Median Max Min SD CV 
Sequel  0.1 0 1 0 0.4 4.0 
Action  0.2 0 1 0 0.4 2.0 

Comedy  0.3 0 1 0 0.5 1.7 
Animated  0.1 0 1 0 0.3 3.0 

Horror  0.1 0 1 0 0.3 3.0 
Motion Picture Association Rating 3 3 4 1 0.8 0.3 

Continuous Variables  

Variable Mean Median Max Min SD CV 
Opening Week Box Office Revenue ($USD) 20,720,651.40 16,930,926.00 70,950,500.00 511,920.00 17,492,442.70 0.84 

Movie Budget ($USD in Millions)  53.3 37.4 200 5 42.9 0.80 
Star Power (Index)  18 18.1 36.8 0 8.9 0.49 

Addict (Trailer Views)  5,933.80 3,480.00 45,865.70 568 7,674.60 1.29 
ComingSoon Website Comments 78.2 36.5 594 2 124.6 1.59 

Fandango Votes 522.3 430.5 1,778.00 35 390.7 0.75 
Can’t Wait to See (Percent)  0.5 0.5 0.8 0.1 0.2 0.40 

 
      
Panel B.   

Discretized Continuous Variables (Into 10 Bins)  

Discretized Variable Mean Median SD CV Bin Size 
Opening Week Box Office Revenue 3.3 3 2.4 0.7 7,043,858.00  $USD 

Movie Budget 2.9 2 2.2 0.8 19.50  $USD 
Star Power  5.4 5 2.4 0.4 3.68  Index 

Addict  1.7 1 1.6 0.9 4,529.77  Views 
ComingSoon Website Comments 1.8 1 2 1.1 59.20  Comments 

Fandango  3.4 3 2.2 0.6 174.30  Votes 
Can’t Wait to See  5.7 6 2.4 0.4 0.07  Percent 
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8.2 The Attributes and Measures 

Entropy of a Single Random Variable 

The entropy and the normalized entropy of each variable in the Craig, Greene, & Versaci (2015) 
dataset is calculated. The closer the distribution of a certain variable to uniform, the higher its 
entropy (and normalized entropy). This translates to a high level of uncertainty for that variable. 

Figure 3, Panel A lists the entropy and the normalized entropy of each variable in the box 
office dataset. Panels B and C present the distributions of two binary variables identifying 
movies as of the comedy or animated genre, respectively. In each histogram, a red horizontal line 
corresponds to 50 percent or the uniform distribution for a binary variable. As is seen in the 
entropy values, the distribution of the comedy indicator is closer to uniformity than the 
distribution of the animated indicator. See Appendix Table 1 for sensitivity analyses using 
alternative entropy and normalized entropy calculations of the discretized continuous variables 
using 8 and 12 intervals for the discretization. 

Figure 3. Entropy and Normalized Entropy of Variables from Craig, et. al. (2015) 

 

Information in a Single Random Variable 

Information is measured in bits. We get one unit, called a bit, of information when a choice is 
made between two alternatives. For example, we receive a bit of information when we are given 
a precise reply to a (binary) question answered by “yes” or “no.” Shannon defines the 
information content of a single outcome xk as  
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ℎ(𝑥𝑥𝑘𝑘) = ℎ(𝑝𝑝𝑘𝑘) = log2(1/𝑝𝑝𝑘𝑘) =  − log2(𝑝𝑝𝑘𝑘).      (12)  

Observing a rare outcome/event – at the tails of the distribution –  provides much more 
information than observing an outcome around the mean of the data. Table 3 presents this 
inverse relationship among discrete variables in the box office dataset. Very few movies in the 
dataset are of either the animated or horror genre. The a-priori probability that a movie is of 
either genre is less than 10 percent. Consequently, the information associated with a new movie 
release being of the horror genre is over 20 times higher than the information associated with a 
new movie not being of this genre. Figure 4 shows the inverse relationship between probability 
and information for all 42 possible events across all discrete and discretized variables in the 
dataset. For a detailed discussion and graphical analyses of information, probabilities and 
entropy see Golan (2018). 

Table 3. Information Associated with Discrete Variable Outcomes from 
Craig, et. al. (2015) 

Variable Outcome/Event Information Observed 
Probability 

Action 
0 / No 0.369 0.774 

1 / Yes  2.147 0.226 

Animated 
0 / No 0.147 0.903 

1 / Yes  3.369 0.097 

Comedy 
0 / No 0.562 0.677 

1 / Yes  1.632 0.323 

Horror 
0 / No 0.147 0.903 

1 / Yes  3.369 0.097 

Motion Picture 
Association Rating 

1 / G Rated  4.954 0.032 

2 / PG Rated 2.047 0.242 

3 / PG-13 Rated 1.147 0.452 

4 / R Rated 1.867 0.274 

Sequel 
0 / No 0.226 0.855 

1 / Yes  2.784 0.145 
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Figure 4. Relationship Between Information and Probability from Craig, et. al. (2015) 

 

Entropy of Multiple Random Variables 

Following equation (2), we calculate the joint entropy of each pair of variables in the dataset. 
These joint entropies are presented in Figure 5 with different gray scale highlighting 
combinations of variables with high entropy values and little joint information (and vice versa).  

As an example, we show in Figure 6 the joint distribution of the ‘comedy’ genre with two 
other variables: the discretized star power (Panel A), and the trailer views on Addict (Panel B). 
For each variables-pair, there are 20 potential events. With uniform distribution the probability 
of each event is 0.05. A simple comparison of Panels A and B shows that the joint distribution of 
the comedy - star power pair is more uniform than that of the comedy - Addict trailer view pair. 
Consequently, the joint entropy of the former pair is higher than that of the later pair.  

From an information, and surprise, point of view, consider Panel B. The comedy receives 
between approximately 9,628 to 14,157 trailer views (category 3). The probability of that event 
is approximately 0.016. Recalling that information is inversely related to the probability of an 
event, if a new comedy release were, for example, to receive more than 14,000 trailer views, 
such an event would be very surprising and informative. On the other hand, a new comedy 
release that receives less than 5,000 trailer views is much less informative as its probability is 
about 0.242.  
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Figure 5. Normalized Joint Entropy of Variables from Craig, et. al. (2015)      
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Figure 6. Comparing the Joint Distribution of Select Variables from Craig, et. al. (2015) 
 

Panel A. Joint Distribution of The Comedy Indicator  
and the Discretized “Star Power” Variable

 
 

Panel B. Joint Distribution of The Comedy Indicator  
and the Discretized “Addict” Variable 
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Figure 7. Mutual Information of all Pairs of Variables from Craig, et. al. (2015) 
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Mutual Information 

Figure 7 shows the mutual information (Eq. 5) for each pair of variables. Consider, for example, 
the Addict Trailer Views and Box Office pair. Their mutual information (Figure 7) is 0.57. To 
shed more light on the meaning of that number, consider their joint distribution (Figure 8). Most 
movies (approximately 66%) garnered less than 21.6 million dollars during their first run 
(categories 1-3). About 92% of all movies had between 500 to 14,157 trailer views on Addict 
(categories 1-3). As shown in Figure 8 and consistent with the findings of Craig, et. al. (2015),  a 
movie rarely collects more than 21.6 million dollars at the box office (category 3 or higher), and 
when it does, most of the time it has over 32,276 trailer views on Addict (category 8 or higher). 
If, for example, we are interested in trying to predict the opening week revenues, given the 
number of trailer views, the marginal additional information gained from knowing the trailer 
views is relatively large. This is driven by the rare and extreme occurrence of box-office “hits” 
with, for example, over approximately 22 million dollars in revenue and over 32,300 trailer 
views.  

Figure 8. Joint Distribution of the Discretized "Addict" and “Opening Week Box Office 
Revenue” Variables from Craig, et. al. (2015) 
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Set of Possible Questions and Related Condition Numbers 

We now summarize (Table 4) the set of possible questions one can answer using this dataset. We 
also show the potential variables that can be used to answer these questions, and we report their 
respected condition numbers.  

Recalling that condition number captures the level of multicollinearity between 
combinations of variables, it is important to calculate those when thinking of the independent 
(including control) variables to be used in a model. The larger this number, the more ill-
conditioned, or ill-behaved, the group of variables are, meaning  they are more sensitive (less 
stable) for small changes in the model (Nath Datta, 2004). Within the context of the basic set of 
questions this dataset can tackle, we identified five possible characterizations and models (types), 
each is described by a subset of the variables. Variables may describe the costs, benefits, serve as 
inputs, attributes, or a signal. The results are shown in Table 4. Naturally, these five types are not 
mutually exclusive. Overall, the condition numbers are quite low and much below the threshold 
value discussed in Section 6.  
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Table 4. The Potential Set of Questions, and Condition Number Among Types of Variables from Craig, et. al. (2015) 

Type of 
Variables Variables 

Condition 
Number of 
Variables 

Possible Question Possible Dependent 
Variable 

Measures or 
Determinants of 

Costs 

Movie Budget ($USD in Millions), 
Star Power (Index), 

Motion Picture Association Rating,  
& Type of Movie 

(Sequel, Action, Comedy Animated and/or Horror) 

16.75 
What components of making 

a movie most influence its 
profitability? 

Box Office Revenues 
($USD) 

Measures or  
Determinants of 

Short Run 
Benefits/Success 

Fandando Votes, 
Can't Wait to See (Percent), 

ComingSoon Website Comments, 
Addict (Trailer Views), 

& Type of Movie 
(Sequel, Action, Comedy Animated and/or Horror) 

20.63 
Are movies that successfully 

garner view attention 
profitable? 

Box Office Revenues 
($USD) 

Inputs Movie Budget ($USD in Millions) 
& Star Power (Index) 5.44 What components of a movie 

capture viewer's attention? Addict (Trailer Views) 

Attributes 
Motion Picture Association Rating,  

& Type of Movie 
(Sequel, Action, Comedy Animated and/or Horror) 

12.62 What type of movies are 
viewers most interested in? 

Can’t Wait to See  
(Percent) 

Signals 

Fandando Votes, 
Can't Wait to See (Percent), 

ComingSoon Website Comments, 
& Addict (Trailer Views) 

9.87 
Does media buzz signal a 
movies success at the box 

office?  

Box Office Revenues 
($USD) 



 31 

Data Integrity: Benford’s Law 

We now check whether the distributions of the first digit, of each variable, satisfy Benford Law. 
We use the maximum entropy approach (Jaynes, 1979), with the observed geometric mean as a 
constraint, to infer that distribution (see Section 6 and Golan, 2018). We repeat this process for 
the first non-zero digit of all continuous variables in the entire dataset. The resulting distribution 
is presented in Figure 9. The empirical distribution of all non-zero digits in the entire data set is 
close to the true Benford distribution suggesting that overall, the data satisfy our integrity 
requirement. 

We repeated that analysis for each continuous variable in the data set. This is shown in 
Appendix Figure 1. All variables except for one, the percentage of Fandango participants that 
voted that they “Can’t Wait to See” a movie, are close to the “true” Benford distribution. If the 
empirical distribution unexpectedly diverges from the Benford distribution or is abnormal in 
some way, then the data may be nonrandom. But, as discussed earlier, there are exceptions, such 
as if the data do not span at least several orders of magnitudes, which is the case with the ‘Can’t 
Wait’ variable. This is also expected as the mean of that variable is equal to its median, meaning 
it cannot be a power law (where the mean is larger than the median). For completeness, Figure 
10 presents the “Can’t Wait to See” digit distribution. Figure 11 presents examples of variables 
that are consistent or inconsistent with Benford law. 

Figure 9. Comparing Theoretical Benford Law Distribution to that of All Continuous 
Variables from Craig, et. al. (2015) 
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Figure 10. Comparing Theoretical Benford Law Distribution to the Can’t Wait to See  
(in Percent) Variable from Craig, et. al. (2015) 

 

Figure 11. Comparing Empirical Digit Distributions of Variables that Do and Do Not Have 
Benford Distribution 
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Cumulative Entropy or Entropy Convergence 

The cumulative entropy analyses shown below are consistent with the Benford Law analyses, 
and support our conclusion of the integrity of the data. Appendix 3, Figures 2 and 3 show the 
cumulative entropies for the rest of the variables in the box office dataset. 

Figure 12. Cumulative Entropies for Select Variables from Craig, et. al. (2015) 
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Information Compression: The Shannon Limit  

The results are shown in Table 5. Overall, the data were compressed by approximately 31 
percent = (1 – (Z/N)). This implies that the dataset can provide a decent level of inference and 
prediction. A simple calculation from Table 5 shows that the compression ratio is approximately 
1.45. 
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Table 5. Shannon Limit Estimates Using Data from Craig, et. al. (2015) 
 

Shannon          
Limit N K 𝜋𝜋 

29,593.510 42,908.000 7,914.000 0.184 
    

 

9   Empirical Example 2: Rural Urban Continuum Codes 

9.1 Description and Basic Statistics   

Here we evaluate a set of datasets called the Rural Urban Continuum Codes (RUCCs) published 
by the USDA. Over the last five decades (1974, 1983, 1993, 2003 and 2013) RUCC datasets 
have been produced to classify U.S. counties along the rural to urban spectrum based on 
population and physical adjacency to the nearest metropolitan area. The definition of each RUCC 
is provided in Table 6. County codes are assigned based on decennial population data, and metro 
and nonmetro delineations from the Office of Management and Budget (OMB). Each RUCC 
dataset contains each county’s name, Federal Information Processing Standard (FIPS) code and 
RUCC. No other nonredundant characteristic information is consistently provided in these 
datasets.  

Generally speaking, these datasets can provide a summary of how urbanized counties 
across the US are distributed, so one can argue that they have value on their own. However, the 
RUCC datasets are rarely used on their own; rather they are used together (time series of the 
RUCC’s) or to supplement other datasets. Most of their value materializes when supporting (or 
complementing) other detests. For example, studying the geographically disadvantaged areas, 
where in conjunction with other data, say hospitals or welfare, can help the policy maker 
determine appropriate policies. The set of potential questions that this dataset can answer is 
described at the end of this section. 
 

Table 6. Rural Urban Continuum Codes 

Code Rural-Urban Classification 
0  Central counties of metro areas of 1 million population or more (Prior to 2003)  
1 Fringe counties of metro areas of 1 million population or more (Prior to 2003)  
1 Counties in metro areas of 1 million population or more (from 2003 onward) 
2 County in metro area of 250,000 to 1 million population 
3 County in metro area of fewer than 250,000 population 
4 Nonmetro county with urban population of 20,000 or more, adjacent to a metro area 
5 Nonmetro county with urban population of 20,000 or more, not adjacent to a metro area 
6 Nonmetro county with urban population of 2,500-19,999, adjacent to a metro area 
7 Nonmetro - Urban population of 2,500 to 19,999, not adjacent to a metro area                                                                                                                             
8 Nonmetro - Completely rural or less than 2,500 urban population, adjacent to a metro area                                                                                                                
9 Nonmetro - Completely rural or less than 2,500 urban population, not adjacent to a metro area                                                                                                            
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In this empirical example, we present different measures for the latest 2013 RUCC 
dataset and a merged dataset containing RUCC codes from the last five decades. Unlike the first 
(movie) example, these datasets have missing information. Table 7 provides summary statistics 
for the 2013 RUCC dataset. In that case, two of the 3,234 counties in this 2013 dataset are 
missing classification codes. Removing these two counties from the dataset has no meaningful 
impact on the informational content of the data. The distribution of each variable is practically 
unchanged.  

Table 7. Summary Statistics of 2013 RUCC Dataset 

Variable N Mean Median Max. Min. SD CV 
Rural Urban Continuum Codes 
(RUCC), 2013 

3,232 4.9 6.0 9.0 1.0 2.7 0.6 

County FIPS codes 3,234 31,544.7 30,038.0 78,030.0 1,001.0 16,425.5 0.5 
2010 Census population 3,234 96,736.7 26,074.0 9,818,605.0 0.0 308,718.3 3.2 
Encoded state variable 3,234 29.9 30.0 56.0 1.0 15.4 0.5 
Encoded description of Rural Urban 
Continuum Codes 

3,234 4.5 5.0 10.0 1.0 2.4 0.5 

On the other hand, when all five RUCC datasets are merged, 106 of 3,241 counties have 
at least one piece of missing information or one variable with missing values. Table 8 presents 
summary statistics for the fully merged dataset. The first column of Table 8 shows the total 
number of counties that do not have missing data for each variable. Approximately, a quarter of 
the 106 counties with at least one piece of missing information are from Puerto Rico, whose 
municipios were first classified into RUCCs in 2013. Due to the large number of counties in the 
U.S., summary statistics are very similar between the full dataset, shown in Table 8, and the 
same dataset excluding the 106 counties with missing information.  

In cases where missing data are not at random, dropping the observations with missing 
information is unadvisable. We can still employ the measures developed here if we treat these 
observations with care, such as creating a new category (dummy variable) for observations with 
missing values. Note that measures computed with and without missing data should be consistent 
when information is missing at random, or the dataset is similarly and meaningfully 
representative after the exclusion of missing information. Unless otherwise specified, the results 
presented here are computed without dropping any observation from the data; we treat missing 
information as a separate category. Consequently, the sum of probabilities corresponding to each 
observed event and the probability of observing no data is one.  

Thus far, we have shown that the RUCC data are relatively complete and almost 
complete for mainland counties (Basic Block 1). In the next section we report measures of 
entropy and mutual information, which capture the information and variation in the data. We also 
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show the cumulative entropy, which confirms the integrity of RUCCs. These datasets are 
inherently complete, representative, and as heterogenous as possible given that all US counties 
are included (Basic Block 2, Criteria E, and K). The size of each dataset is limited to the number 
of counties in existence (over three thousand). In that way, the dataset captures the complete 
population. But only a few variables are consistently reported in each decade’s dataset, thereby 
limiting its ‘stand-alone’ value (Basic Block 2, Criteria A). However, as mentioned earlier, that 
dataset is often used as a reference, supplement, or crosswalk to other datasets. We show in the 
next section that the amount of non-redundant information in these RUCCs is quite small (Basic 
Block 2, Criteria L and M).  

These data are at the aggregate county level and no personal identifiable information is 
included. The USDA makes this complete dataset available and accessible to the public (Basic 
Block 2, Criteria J). They also provide detailed documentation on the definition of each code, 
how codes are constructed, discussion of the data used to designate codes, and changes over 
time3 (Basic Block 2, C, F and I).  

Table 8. Summary Statistics of Merged RUCC Datasets (1974, 1983, 1993, 2003, and 2013) 
Variable N Mean Median Maximum Minimum SD CV 

Rural Urban Continuum Codes 
(RUCC), 2013 

3,232 4.9 6.00 9.0 1.0 2.7 0.6 

Rural Urban Continuum Codes 
(RUCC), 2003 

3,142 5.1 6.00 9.0 1.0 2.7 0.5 

Rural Urban Continuum Codes 
(RUCC), 1993 

3,142 5.6 6.00 9.0 0.0 2.7 0.5 

Rural Urban Continuum Codes 
(RUCC), 1983 

3,141 5.8 6.00 9.0 0.0 2.6 0.4 

Rural Urban Continuum Codes 
(RUCC), 1974 

3,141 6.0 7.00 9.0 0.0 2.5 0.4 

County FIPS codes 3,241 31,515.0 30,035.00 78,030.0 1,001.0 16,451.2 0.5 

2010 Census population 3,234 96,736.7 26,074.00 9,818,605.0 0.0 308,718.3 3.2 

2000 Census population 3,141 89,596.3 24,595.00 9,519,338.0 67.0 292,462.2 3.3 

Percent of workers in nonmetro 
counties commuting to central 
counties of adjacent metro areas in 
2013 

3,142 5.0 0.00 64.5 0.0 9.2 

1.8 

Encoded state variable 3,241 29.9 30.00 56.0 1.0 15.4 0.5 

Encoded description of Rural 
Urban Continuum Codes (RUCC), 
2003 

3,142 4.7 5.00 9.0 1.0 2.3 
0.5 

Encoded description of Rural 
Urban Continuum Codes (RUCC), 
2013 

3,234 4.5 5.00 10.0 1.0 2.4 
0.5 

 
3 Documentation is available at <https://www.ers.usda.gov/data-products/rural-urban-continuum-
codes/documentation/>. 
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9.2 Attributes and Measures  

We now report some of the proposed measures and attributes discussed earlier. Measures were 
computed under two scenarios of missing information: dropped or treated as a separate category 
or event. As previously discussed, excluding missing information did not meaningfully change 
any of the results emerging from that dataset. For example, Table 9 presents the distribution of 
RUCC codes for 2013 with and without missing information. The probability of observing each 
type of county changes only marginally. Consequently, the information content from each RUCC 
remains consistent. 

Table 9. Information Content of RUCC with and without Missing Information, 2013 

With Missing 
Information 

RUCC 

Without Missing 
Information 

Info. 
Content 

Prob. Info. 
Content 

Prob. 

2.780 0.146 Counties in metro areas of 1 million population + 2.866 0.137 
3.037 0.122 County in metro area of 250,000 to 1 million population 3.048 0.121 
3.135 0.114 County in metro area of fewer than 250,000 population 3.139 0.114 
3.901 0.067 Nonmetro county w/ urban pop. of 20,000 +, adjacent to metro area 3.873 0.068 
5.048 0.030 Nonmetro county w/ urban pop. of 20,000 +, not adjacent to a metro area 5.091 0.029 
2.441 0.184 Nonmetro county w/ urban pop. of 2,500-19,999, adjacent to a metro area 2.402 0.189 
2.894 0.135 Nonmetro - Urban pop. of 2,500 - 19,999, not adjacent to metro area 2.856 0.138 
3.881 0.068 Nonmetro - Completely rural or < 2,500 urban pop., adjacent to metro area 3.833 0.070 
2.921 0.132 Nonmetro - Completely rural or < 2,500 urban pop., not adjacent to metro area 2.907 0.133 
8.492 0.003 Missings   

 

Table 10 presents the normalized entropy of RUCC from 1974 to 2013 with and without 
missing information. Differences are no more than six percent and the relative entropies between 
the codes by decade remain quite similar.  
 

Table 10. Normalized Entropy of RUCC By Decade with and without Missing Information 

Variable With Missing  
Information 

Without Missing 
Information 

RUCC 1974 0.844 0.894 
RUCC 1983 0.850 0.900 
RUCC 1993 0.867 0.918 
RUCC 2003 0.901 0.960 
RUCC 2013 0.913 0.958 

  

When using the merged dataset of RUCC, users are able to observe the distribution of 
counties during each decade and how this distribution has changed over time. However, 
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comparisons over time should be made with caution as the meaning of some codes, particularly 
the codes characterizing counties in metro areas with more than one million residents, changed in 
2003.  

Direct distributional comparisons can be made between codes in 2013 and 2003, and 
1974 to 1993. Figure 13, Panel A presents the mutual information from such comparisons. For 
example, the mutual information between RUCC in 2003 and 2013 represents the marginal 
additional information gained from using RUCC in 2003 to analyze RUCC in 2013. As shown in 
Figure 13, Panel B, mutual information is inversely related to the percent of counties whose code 
changes between any two years. When changes are less frequent, the marginal information 
gained is greater, especially when changes are concentrated among certain types of counties.   

Figure 13. Mutual Information Between Comparable RUCC Throughout the Decades 

 
Note that RUCC are comparable between 2013 and 2003, and 1974 to 1993. See Table 7 for additional details.  

Figure 14 presents the cumulative entropy of RUCC for 2003 and 2013. The entropy of 
each variable very quickly converges. For both variables, the measure converges after only 
considering ten percent of the sample suggesting no issues with the data’s integrity.  



 39 

Figure 14. Cumulative Entropy of RUCC in 2003 and 2013 

  

Table 11 summarizes the Shannon limit of the merged RUCC dataset with codes for five 
decades, and the 2013 RUCC dataset. The information in the former dataset can only be 
compressed by approximately 6 percent. Meanwhile the information in the later dataset, whose 
information is a subset of the former dataset, can be compressed by approximately 19 percent. 
The compression ratios are 1.066 and 1.229 respectively for the first and the second. 

Table 11. The Shannon Limit for Two Datasets 

 
Compressed By Shannon Limit N K 𝜋𝜋 

Merged Dataset for RUCC 1974 to 1993 6.2 % 5,530,401 5,897,901 2,088,536 0.354 

RUCC 2013 Dataset 18.6% 5,046,081 6,199,276 1,560,427 0.252 
 

As previously discussed, these RUCC datasets can be characterized as support datasets 
with metadata characterizing political geographies (Basic Block 3, Criteria A). Their meaning lie 
in the exact way the RUCCs are defined, and only questions on urbanization and the distribution 
of urban locations can be answered with this dataset alone. The merged RUCC dataset also 
provides information and changes over time, but without additional context cannot be used to 
summarize, predict, or explain causal relationships (Basic Block 3, Criteria B, C1 and E2). 
Consequently, measures like the condition number have no meaning (and value) in this case. In 
the next section we present the set of questions this dataset can be used to answer. 

Combined, however, with other micro or macro level data will increase the value of both 
datasets and will provide the basis for answering a whole family of new questions. For example, 
RUCCs can serve as geographic controls for micro economic analysis using individual or house 
level data and help answer questions ranging from urban-rural migration to socioeconomic 
wellbeing. Or consider another simple example, where the RUCCs are combined with additional 
aggregate county level indicators for studying the patterns between local gross domestic product 
and urbanization. Thus, as emphasized earlier, the potential value of this (support) dataset 
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increases when combined, presumably as designed, with other datasets and causal relationships 
can be disentangled by conditioning on urban-rural status.  

The set of possible questions these data can be used to answer is discussed below. 
However, in this case, to answer some of these questions may require supplementary data. 

1. What is the distribution of counties (by population density) within states?  
(Note that this could be extended for distribution of urban and rural counties. However, 
the dataset has multiple classifications, and there are different designations of “rural” and 
not all non “rural” designations are necessarily urban.)   

2. How has the distribution of counties changed over time?  

3. Which States have large rural and less populated areas?  

(Note that this question may not be answered using the RUCC dataset alone. One may 
need to merge the RUCC with another dataset.) 

4. What states are primarily comprised of rural counties?  

5. Are there rural areas (in a State) that are far (say, more than 50 or 100 miles) from big 
metropolitan areas?  
(Note: Again, it is unclear if such a question can be answered using the RUCC data alone, 
as we would likely need geospatial data in the form of distance and size to determine (a) 
which counties neighbor each other and (b) how far counties are from the closest or 
largest metropolitan area in their state.) 

6. Could certain counties be defined (or designated) as less advantaged?  

(Note: Assuming, for example, that population is used a as a proxy for economic activity 
we could determine which counties have less economic activity and are likely less 
advantaged.) 

10  Empirical Example 3: Agricultural Resource Management Survey Data 

10.1 Description and Basic Statistics   

In this example we apply our approach to a very large and informative dataset. It is a survey data 
on the U.S. farming sector from 2003 to 2021. Industry income and expenditure information are 
collected by the National Agricultural Statistics Service (NASS) of the USDA via the 
Agricultural Resource Management Survey (ARMS). These data are used in a variety of USDA 
reports evaluating the state of the farming sector and its changes over time. The primary report 
summarizing survey results is the Farm Production Expenditures Report, which includes state 
and national estimates on average and total annual income earned, and expenses incurred, by 
farmers. Many other researchers and government organizations also use these data to produce 
their own estimates and to study the sector’s strength and contribution to the overall economy. 
Farm level micro data from the survey are not published by NASS, rather only the averages at 
the state and national level are publicly available. This sample has state level data for the 
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following States: Arkansas, California, Florida, Georgia, Illinois, Indiana, Iowa, Kansas, 
Minnesota, Missouri, Nebraska, North Carolina, Texas, Washington, and Wisconsin.  

The set of questions, accompanied by the condition number for each potential question, is 
discussed in Section 10.3. 

Table 12 presents summary statistics of the panel of ARMS data provided by NASS. 
Each variable (except for number of farms) is a farm-level average produced using survey data 
from each of the 15 states. The dollar values are not adjusted for inflation. Appendix B,  Table 2 
contains the ARMS definitions for all income and expenses variables.  All variables are in $USD 
and complete except for the “value of inventory change” variable, which captures changes in the 
market value of crops produced over the calendar year. Eight of the 285 observations in the panel 
are missing data for this variable. Missing data are not consistently observed from any one year 
or state, and summary statistics remain meaningfully equivalent when corresponding 
observations are dropped. When comparing summary statistics between the full panel with and 
without missing information, no single statistic differs by more than five percent and on average 
all summary statistics differ by less than one percent.  
 

Table 12. Summary Statistics of the ARMS Data, 2003 - 2021  
Mean Median Maximum Minimum SD CV 

Number of Farms 74,778.1 62,001.0 249,002.0 34,001.0 48,541.5 0.65 
Gross cash farm income 190,754.3 157,773.0 739,452.0 40,646.0 127,539.5 0.67 

Livestock income 54,193.3 36,554.0 222,741.0 7,247.0 42,033.7 0.78 
Crop sales 104,676.0 83,945.0 492,628.0 11,403.0 81,196.6 0.78 

Government payments 6,835.4 5,575.0 39,717.0 463.0 5,377.0 0.79 
Other farm-related income 25,049.6 20,909.0 121,253.0 4,363.0 17,794.8 0.71 

Total cash expenses 142,369.0 116,318.0 544,858.0 33,765.0 92,776.7 0.65 
Variable expenses 113,536.8 94,016.0 473,447.0 26,128.0 78,390.3 0.69 

Livestock purchases 9,668.4 2,928.0 111,548.0 146.0 15,887.9 1.64 
Feed 16,214.4 11,559.0 77,174.0 1,968.0 14,263.4 0.88 

Other livestock-related expenses  2,906.5 1,929.0 31,462.0 302.0 3,366.6 1.16 
Seed and plants 11,386.1 9,464.0 30,279.0 1,521.0 6,811.9 0.60 

Fertilizer and chemicals 22,312.7 18,796.0 66,351.0 4,187.0 12,450.1 0.56 
Utility expenses 4,550.9 2,764.0 39,979.0 864.0 5,696.2 1.25 
Labor expenses 20,335.6 9,060.0 179,227.0 1,639.0 29,662.2 1.46 

Fuels and oils 7,843.9 7,493.0 19,788.0 1,802.0 3,447.6 0.44 
Repairs and maintenance 8,646.6 7,884.0 22,140.0 3,029.0 3,903.3 0.45 

Machine-hire and custom work 3,725.0 2,395.0 27,234.0 640.0 4,193.1 1.13 
Other variable expenses 5,974.0 4,189.0 32,848.0 1,532.0 5,353.4 0.90 

Fixed expenses 28,832.2 22,571.0 94,595.0 7,023.0 18,592.7 0.64 
Real estate and property taxes 4,550.0 3,647.0 18,559.0 1,271.0 3,064.6 0.67 

Interest 5,918.1 5,511.0 15,509.0 1,447.0 2,869.0 0.48 
Insurance premiums 4,863.4 4,045.0 15,766.0 1,389.0 2,821.2 0.58 

Rent and lease payments 13,500.7 8,770.0 52,734.0 1,410.0 11,175.4 0.83 
Net cash farm income 48,385.4 37,345.0 206,700.0 -915.0 37,210.8 0.77 

Nonmoney income 7,632.5 6,937.0 24,517.0 3,603.0 2,744.9 0.36 
Value of inventory change 4,943.0 3,393.0 32,616.0 -13,386.0 7,471.4 1.51 

Depreciation 13,794.2 12,152.0 41,483.0 4,057.0 7,157.2 0.52 
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Labor, non-cash benefits 297.4 213.0 2,465.0 13.0 268.1 0.90 
Adjusted breeding livestock income 607.0 162.0 8,465.0 0.0 1,149.1 1.89 

Net farm income 46,128.5 36,743.0 194,770.0 -132.0 34,659.6 0.75 
 
All variables except “Value of inventory change” contain N=285 observations. The “Value of inventory change” variable contains 277 estimates. 
See Appendix Table 2 for definitions of each variable provided by NASS.  

To compute the previously defined and discussed measures, all variables are discretized 
into ten intervals as done in prior empirical examples. Table 13 presents the mean, standard 
deviation and median of all discretized variables for the subset of 277 observations with 
complete information. The discretized average of all income and expenditure variables is less 
than five, and the discretized median of most variables is less than or equal to three. These 
statistics suggest the existence of observations that are very far from the means. Figure 15 
presents the informational content and probability of each variable’s discretized state. The 
probability that an average farm in any one state in the panel is garnering income or accruing 
operating costs in the top interval is less than one percent. 
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Table 13. Summary Statistics of Variables Discretized into Ten Intervals 

 Median Mean SD 
Other livestock-related expenses  1 1.5 1 
Utility expenses 1 1.5 1.4 
Adjusted breeding livestock income 1 1.5 1.2 
Livestock purchases 1 1.6 1.3 
Labor 1 1.6 1.6 
Machine-hire and custom work 1 1.7 1.6 
Labor, non-cash benefits 1 1.7 1.1 
Other variable expenses 1 1.9 1.7 
Government payments 2 2.1 1.4 
Other farm-related income 2 2.3 1.5 
Number of Farms 2 2.4 2.2 
Variable expenses 2 2.4 1.8 
Feed 2 2.4 1.9 
Real estate and property taxes 2 2.4 1.8 
Nonmoney income 2 2.4 1.4 
Crop sales 2 2.5 1.7 
Total cash expenses 2 2.6 1.8 
Gross cash farm income 2 2.7 1.8 
Livestock income 2 2.7 2 
Insurance premiums 2 2.9 2 
Rent and lease payments 2 2.9 2.2 
Net cash farm income 2 2.9 1.8 
Net farm income 2 2.9 1.8 
Fixed expenses 2 3 2.1 
Depreciation 3 3.1 1.9 
Fertilizer and chemicals 3 3.4 2 
Repairs and maintenance 3 3.5 2 
Interest 3 3.7 2.1 
Seed and plants 3 3.9 2.4 
Fuels and oils 4 3.9 2 
Value of inventory change 4 4.5 1.7 
 
Note: Sample of non-missing data includes 277 observations at the state level.   
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Figure 15. Informational Content and Probability of Each Variable’s Discretized State 

Note: Cells with an “X” imply no observed data in that variable’s interval.    
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10.2 Attributes and Measures  

Table 14 presents the normalized entropy of all discretized variables in the dataset. Many 
of the average expense variables, such as labor, livestock and utility expenses, have the lowest 
normalized entropy values in the dataset. Low normalized entropy values for expense variables 
point toward the possible existence of ‘outliers’ (values far away from the means – at the tails of 
the distribution) among the sample of states within the panel. These ‘outliers’ can be seen in 
Figure 16, Panel A.  

Table 14. Normalized Entropy of All Variables without Missing Information 

Variable Normalized Entropy 
Seed and plants 0.90 
Interest 0.88 
Repairs and maintenance 0.86 
Fuels and oils 0.85 
Fertilizer and chemicals 0.84 
Depreciation 0.82 
Fixed expenses 0.82 
Insurance premiums 0.79 
Rent and lease payments 0.78 
Livestock income 0.77 
Value of inventory change 0.77 
Net farm income 0.76 
Gross cash farm income 0.74 
Net cash farm income 0.74 
Total cash expenses 0.74 
Crop sales 0.70 
Feed 0.70 
Variable expenses 0.70 
Real estate and property taxes 0.68 
Other farm-related income 0.65 
Government payments 0.63 
Nonmoney income 0.62 
Number of Farms 0.58 
Other variable expenses 0.54 
Labor, non-cash benefits 0.49 
Machine-hire and custom work 0.47 
Livestock purchases 0.40 
Labor expenses 0.38 
Other livestock-related expenses  0.38 
Adjusted breeding livestock income 0.36 
Utility expenses 0.32 
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Figure 16. Comparing Variables with the Highest and Lowest Normalized Entropy Values 

Panel A.  
Distribution of a Variable with the Lowest 

Normalized Entropy, Utility Expenses 

Panel B. 
Distribution of a Variable with the Highest 

Normalized Entropy, Interest Income 

  

 The cumulative entropy of every single discretized random variable was calculated to 
study its convergence behavior. All variables exhibited distinguishable convergence except for 
the variable containing the number of total farms in each state (as shown in Figure 17). Slow 
convergence or the lack of convergence may signal poor data quality or some sharp fluctuations 
due to some deterministic or stochastic effects. Further examination of this variable reveals that 
values at the tails of the distribution were observed for a single State, Texas, which also 
exhibited a one-time 8 percent increase in the number of farms in 2007. No other abnormalities 
in this variable were discovered.   

 
Figure 17. Cumulative Entropy of Number of Farms Per State, 2003 – 2021 

 



 47 

Next, we apply Benford’s Law. As shown in Figure 18, the data as a whole are well 
behaved and follow Benford’s Law. However, when examining variable specific digit 
distributions, few deviations from the natural law exist. As shown in Figure 19, Panel A, and 
consistent with the cumulative entropy results in Figure 17, the digit distribution corresponding 
to the number of farms in each state deviates from Benford’s Law. This is expected as Benford 
law holds for variables that there values vary by an order of more than a single magnitude.  

Figure 18. Benford's Law Distribution of All Variables 

 
Figure 19. Variables that Deviate from Benford’s Law 

Panel A. Number of Farms Panel B. Fuel Expenses 
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Figure 20. Mutual Information of Pairs of Variables 
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Figure 21. Joint Discretized Distributions of Discretized Gross Cash Income  
and Total Cash Expenses 

 

 
 

Figure 20 presents the mutual information between all pairs of income and expense 
variables. The largest values of mutual information come from the following pairs of variables: 
variable expenses and gross cash farm income, variable expenses and total cash expenses, and 

All Estimates 
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Years 2014 &  
2017-2021 

Years 2013- 2021 
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total cash expenses and gross cash farm income. Figure 21 illustrates the joint distribution for the 
last pair of variables; those with the greatest mutual information. Consistent with prior results, 
some states across the panel have on average farms that incur relatively extreme expenses, but 
also earn relatively large incomes when compared to the average farm in other states. From 2013 
to 2021, the top three intervals of both total cash expenses and gross cash farm income (in the 
box outlined in blue in Figure 21) were fully comprised of average estimates from California.  

Table 15 summarizes the Shannon limit of the state-level panel. The information in this 
dataset can be compressed by approximately 35.2 percent. Of all other empirical examples 
presented, this dataset has the most redundancies. The compression ratio is 1.54. 

Table 15. The Shannon Limit of ARMS Income and Expenditure Data, 2003 - 2021 

Compressed Shannon Limit N K 𝜋𝜋 
35.2% 370879.365 572,133 94,917 0.166 

 
 

10.3 Questions and Condition Numbers: A Disaggregated Panel 
So far we have used an aggregated panel of the ARMS dataset to investigate some of its basic 
quantitative properties. Here, we use a more detailed and disaggregated subset of the ARMS data 
to highlight some of the basic families (types) of questions that these data have the potential to 
study and answer. We use an unbalanced panel (2003 to 2021) by type of farm. Though many 
farms produce multiple products, they are classified in the dataset according to their primary 
product. Thirteen types of product classifications are considered over 15 States and 19 years. 
Each observation in this dataset is a farm of a certain type, within a specific State, for a specific 
year. Overall, there are 2,691 observations in this panel.  

The degree of balance within each State and type of farm varies. Table 16 shows that 
variation. Each cell in the table presents the percent (State-farm-type) of the panel that is 
observed. Cash crops, cattle, and other field crops and livestock are relatively and consistently 
observed within each state over the sample period. However, wheat, tobacco, cotton and peanuts 
are inconsistently observed over the sample period. As expected with an unbalanced panel, there 
are observations with missing values (less than 0.5 percent of data). We note, however, that 
missing data do not imply zeros, as zeros are observed.  

Table 17 characterizes key variables of the ARMS data (by state and type of farm) 
described above. Farms are categorized by type where the categories include cash grains, wheat, 
corn, soybeans, specialty crops (fruits and vegetables), cattle, hogs, poultry, dairy, other field 
crops, other livestock, and tobacco, cotton and peanuts. By design, farm income and expenses 
are broken down by type, are additive (Basic Block 3, Criteria E1), and can be used to calculate 
proportions of totals. Multicollinearity is thus high among variables, especially those related to 
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farm expenses and should not be jointly used for inference. This is consistent with the 
redundancies in the data as shown by its Shannon limit.  

In addition to income, expense, production, relative efficiency, productivity, and potential 
environmental impact (pollution) information, the ARMS data capture how federal and local 
policies impact farms’ behavior, such as operating costs via taxes or subsidies. Besides type of 
product, little characteristic information on farms is provided. No distributional information (say 
by type and/or State) is given. The observations are representative of aggregated survey data 
(Basic Block 3, Criteria N). Users are able observe the operating costs and conditions of an 
average farm, in a specific State, at a certain point in time, but are unable to observe individual 
farms (Basic Block 3, Criteria D and C2) or control for variation in farm specific characteristics.  

As shown in Table 17, the ARMS data have the potential to answer a rich set of questions 
on the average state and annual progression of the farming sector from 2003 onward (Basic 
Black 3, Criteria O and Q). Since the ARMS data only provide information on averages, it is not 
useful for detailed distributional analyses, including distributional dynamics, by State and type. 
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Table 16. Percent of Panel Observed by State and Farm Product Type 
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Table 17. ARMS Data: Potential Questions and Condition Numbers 
     

Type of Variables Variables 
Condition 
Number of 
Variables 

Possible Question Possible Dependent 
Variable 

Determinants of Costs, 
production, 

productivity, pollution 
and efficiency 

Expenses relating to livestock, breeding livestock, 
utilizes, seeds and plants, repairs and maintenance, fuels 

and oils, fertilizer and chemicals, labor (and non-cash 
benefits), and feed; Fixed expenses; Insurance premiums; 

Rent and lease payments; Total cash expenses; Real 
estimate and property taxes; Other variable expenses; 

Machine-hire and custom work Interest (paid); 

 
N/A1 

Are certain types of farms more 
productive than others?  

Stochastic frontiers of different 
industries; 

Productivity – Pollution and 
Sustainability of farms and firms; 

Has farm productivity changed over 
the last decade? 

 
Are there barriers to entry? If so, what? 

Do changes in property taxes (i.e., 
property tax policy) affect the number 

of farms?  

Net farm income 
 
 
 
 
 
 
 

Number of farms 

Short Run 
Benefits/Success 

Livestock income; Net farm income; Income from crop 
sales; Other farm-related income; Nonmoney income 113.45 

Has farm labor become more 
productive/profitable over the last 

decade?  
Is pollution per unit of production 

increases? If so, what are the major 
causes for this? 

Labor expenses  

Federal and Local 
Policies Government payments; Real estimate and property taxes 2.48 

What types of farms receive the most 
government aid? Does it impact the 

structure of the industry? 
 

Do government payments keep farms 
in business?     

 
Do farms experiencing higher 

depreciation (in capital and/or the 
value of their output) receive 

government payments? 

Type of farm 
 
 
 
 

Number of farms 
 
 

Depreciations and 
Change in the Value of 

Inventory  

Attributes Number of farms; Type of farm (encoded) 4.78 

Which farming businesses are most 
lucrative (in terms of income and 

profit)? Is that connected to 
productivity or size? Has this changed 

over the last decade?    

Net farm income 

Relationship between 
the market/economy 

and farms/firms 

Capital (Machine) Depreciation; Value of inventory 
change 1.77 

Demand and supply; 
Is the number of operating farms 

responsive to changes in the market 
value of inventory?  

Number of farms 

 
1 No condition number was calculated. The expense variables categorized total incurred expenses by type and are by design collinear.  
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11  Value and Quality: Graphical Comparison of the Datasets  

Having summarized the different data sets in much detail, we now compare them. Figure 22 
shows the aggregated values (by Quality and Value Blocks) for each one of the datasets. Figure 
23 provides a detailed view of the attributes’ distributions within each block. Table 18 shows the 
exact value of the attributes, by sub-categories defined in the table. The exact scores of each 
attribute and their definitions are shown in Appendix Table 3 and 4. 
 

Figure 22. Datasets Comparison by Blocks: Quality and Value 
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Figure 23. Datasets Comparison by Blocks and Attributes 

Panel A. Attributes of Data Quality: Basic Block 2 

 

Panel B. Attributes of Potential Value: Basic Block 3 
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Table 18. Case Study Valuations Disaggregated by Attributes 

Panel A. Data Quality: Basic Block 2 

Criteria 
Datasets 

Movie 
Release 

Data 
RUCC 

USDA 
ARMS 
Data 

A, C, D Completeness, Quality and Documentation 6.97 4.95 9.00 

E, F, G Representativeness, Trust and Believability 5.00 5.00 5.00 

I Age of Data and Dataset 1.71 3.70 16.33 

J Accessibility 5.00 4.00 3.00 

H, K Interpretability and Heterogeneity 1.00 1.92 1.00 

L, M Dependencies, Predictability and Embedded Information 7.50 3.00 3.50 

Score 27.2 22.6 37.8 

  
   

Panel B. Potential Value: Basic Block 3 

Criteria 
Datasets 

Movie 
Release 

Data 
RUCC 

USDA 
ARMS 
Data 

B, C1, C2 Semantics, Meaning, Importance and Inference 8.00 11.00 23.00 

D, E2, F, J, K, R Extremes, Relationships, Questions, Inference and Uniqueness 4.02 11.69 12.68 

G, H, I Timeliness, Availability and Consistency  0.00 2.00 4.00 

L, M, O Heterogeneity, Quality, Size and Representativeness 1.50 7.00 5.00 

P, Q Expected Outcomes and Time Horizon 8.00 2.00 11.00 

Score 21.5 33.7 55.7 

12  Value of Access to Data 

Like the value of data, the value of access to the data is also relative. However, the main 
difference is that the value to access the data is positive only if the potential value of the dataset 
itself is positive. (Given the arguments discussed in Section 2, we cannot think of a case where 
the data itself will have a negative value.) In a way, the potential value of the data can only be 
realized if we have access to that data. If that access is free (publicly available) for all, and 
straightforward, then the full potential of the data may be realized. This can be summarized as 
follows: The probability of extracting the full potential value embedded in the data is conditional 
on the accessibility to that data. The more accessible and open (for public use) are the data, the 
higher the probability of reaching the full potential of that data; the probability is a positive 
function of the accessibility. 
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13  Notes on Monetary Value 

The policy maker may not be satisfied by just looking into the potential value of the data. Rather, 
they may want the monetary value of the data, capturing the potential benefit from the data. 
Since the cost is relatively simple to calculate or approximate, it will allow the policy maker to 
do a cost-benefit analysis. But converting the relative value to a monetary value is not trivial. It 
can be done in some cases. 

Given the approach proposed in this paper, we can provide a certain (relative) value to a dataset. 
One way of converting that value to monetary units is as follows. Assume, for now, that we were 
able to answer all of the potential questions that a dataset can answer (which is a part of Block 3 
attributes). That is, the complete potential of the data materialized. With that new knowledge, we 
can calculate the potential benefit to society. We can think about it as a variation of the 
compensation principle or Pareto improvement. Did the new knowledge that has transformed 
from the data (and access to that data) increase society’s welfare? For example, if the data 
allowed us to construct a new policy that reduces inequality, and thereby increases society’s 
welfare, then we can translate this, approximately, into monetary units. To summarize, assuming 
the potential of the data materialized, can it be transformed into a Pareto improvement for 
society? If the interest lies in a certain group within society, the question then is if the data 
allowed us to improve the welfare of that group, even if it is on account of others. But this is, of 
course, problem and policy specific. 

14  Concluding Thoughts and Open Questions 

We proposed a way to approximate the relative potential value of data and access to that data. 
Though value is a relative concept, we construct our proposed measure as a sum of different 
attributes. Each one of these attributes has a finite and bounded value. If the number of possible 
values is finite, say Q, then, the value of each attribute is bounded by 2|Q|. Aggregation in that 
case is trivial. The (relative) weights of these quality and value attributes provide insights into 
the different constituents of the overall potential. 

However, as emphasized throughout this work, not all the attributes can be perfectly 
quantified. In fact, some of the most important attributes are defined on meaning and semantics. 
Assigning values to such attributes should be handled with much care. We proposed some ways 
of doing that, but as we discussed previously, these assignments are relative. However, given that 
(i) there are many attributes, and the (ii) assignments is done by the same expert, or a set of 
experts, one can argue that, even though the calculated values of the different datasets are 
relative, it is still possible to rank the datasets in terms of their approximate values. Furthermore, 
if several experts decide on these values independently, then an improved (relative) potential 
value measure is the median, or an interval range, based on the experts’ assignments. 
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The three empirical examples studied here demonstrate the potential use of our proposed 
measures. But this is just the beginning. In future research, we plan to refine and update our 
measure, with special effort on the non-quantifiable, or fuzzier, attributes. 

We conclude this paper with a short list of questions that we believe are still open.  
• We did not discuss AI in this paper. The question of how to evaluate the additional 

contribution (if such exists) of AI to the potential value of data, is still an open question. 
But regardless of the answer to that question, one must keep in mind our basic 
assumption here: the value of the data must be independent of the inference. Will AI 
impact the value while satisfying our requirement? 

• Is it possible to improve the way attributes related to meaning and semantics are defined, 
evaluated and (relatively) quantified? 

• What other attributes contribute to the value? 
• Should the attributes be mutually exclusive and independent of one another? 
• What is the best way to transform the value to a monetary amount (From data to 

knowledge to monetary value)? 
• We assigned some scales for each value, but is there a better way to assign values to 

attributes? 
• Is it possible to develop a set of axioms for evaluating the potential value? (Certain 

axioms may yield similar attributes to what is proposed here; other axioms may yield 
different, or partially different, attributes.)  

• What is the impact of data aggregation on the value? Is it problem specific, or is there a 
general ‘law’ to follow? 

These are just some of the open questions. Some of these questions are new, others are as old 
as science itself. The search for answers for the older, and tougher, questions can be found in the 
philosophy and philosophy of science literature, as well as the more recent literature across many 
disciplines, including economics, environmental and climate science, medicine, computer 
science, and more. 
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Appendix A: Additional Figures From the Empirical Studies 
 

Appendix Figure 1. Benford’s Law Distributions for All Continuous Variables from Craig, et. al. (2015) 

Opening Week Box Office Revenue 
($USD) 
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Appendix Figure 2. Cumulative Entropies for Discrete Variables from Craig, et. al. (2015) 
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Appendix Figure 3. Cumulative Entropies for Continuous Variables from Craig, et. al. (2015) 

Opening Week Box Office Revenue 
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Appendix B: Additional Tables From the Empirical Studies 

Appendix Table 1. Sensitivity of Entropy Calculations to Discretization of  
Continuous Variables from Craig, et. al. (2015) 

 
 Number of Intervals Used to Discretize 

 8 10 12 

Variable 
Entropy Normalized 

Entropy Entropy Normalized 
Entropy Entropy Normalized 

Entropy 

Addict  1.357 0.452 1.526 0.460 1.776 0.495 
Opening Week Box Office Revenue ($USD) 2.450 0.817 2.747 0.827 2.989 0.834 
Movie Budget ($USD)  2.146 0.715 2.409 0.725 2.629 0.733 
ComingSoon Website Comments 1.070 0.357 1.404 0.423 1.571 0.438 
Can’t Wait to See  2.836 0.945 3.199 0.963 3.478 0.970 
Fandango  2.427 0.809 2.791 0.840 2.969 0.828 
Star Power  2.897 0.966 3.187 0.959 3.423 0.955 
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Appendix Table 2. Definition of Variables from the Agricultural Resource Management Survey  

Variable Definition 

Gross cash farm income For farms participating in government programs, gross cash 
farm income is the total amount of cash received by the farm 
operation from the sale of agricultural products, services 
rendered, or government payments received during a given a 
calendar year. 

Livestock income The value of all livestock and poultry sold from the farm 
operation net of any marketing charges. All sales of livestock 
through marketing contracts or payments received from prior 
years' contracts are also included. For integrated operations, 
which do not sell the livestock but pass them on to another 
phase of the operation, an estimate of the value of the livestock 
moving through the operation is captured as sales. 

Crop sales The amount received from cash sales and marketing or forward 
contracts for all crops plus the difference between Commodity 
Credit Corporation crop placements and redemptions. 
Payments received for crops produced in previous years or 
delivered under 
prior year's marketing contracts are included. 

Government payments Gross value of direct government payments received by farm 
operations during the calendar year. Programs for which 
payments are received include: direct payments, counter-
cyclical payments, loan deficiency payments (LDPs), 
marketing loan 
gains, peanut quota buyout program, milk income loss contract 
payments, disaster payments, conservation reserve program 
(CRP), wetlands reserve program (WRP), environmental 
quality incentive program (EQIP), and all other Federal and 
State 
programs. 

Other farm-related income Includes income from machine-hire, custom work, livestock 
grazing, land rental, contract production fees, outdoor 
recreation, timber sales, hedging profit or losses, insurance 
indemnities, cooperative patronage dividends and refunds, 
leasing of livestock and machinery or equipment, and any 
other farm-related source. 

Total cash expenses Cash expenses represent the total amount of funds paid out by 
the farm operation during a calendar year. Expenses paid by 
landlords or parties for which a contractual agreement existed 
during the year are excluded from cash expenses reported for 
farm operations. Marketing charges such as commissions, 
storage, inspection, insurance, drying, check-offs, yardage, and 
auction are excluded from cash expenses. 

Variable expenses Expenses incurred in the production process that vary with the 
quantity and prices of inputs used. 

Livestock purchases The total amount paid for livestock and poultry including 
commission, yardage, insurance and other associated fees. 
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Breeding livestock treated as a depreciable capital is not 
included. 

Feed Amount paid by the farm operation for all feed grains, hay, 
forages, mixed or formula feeds, concentrates, supplements, 
premixes, salt, minerals, animal byproducts, and all other feed 
additives and ingredients. 

Other livestock-related expenses  Amount paid by the farm operation during the calendar year 
for livestock leasing; custom feed processing, grinding or 
mixing of feed; bedding, litter, or straw; pasturing, grazing or 
custom feeding, veterinarian services or supplies, amount spent 
for sprays, dips, dusts or any other chemicals, sheep sheering, 
horse-shoeing, removal of dead animals, branding, artificial 
insemination and breeding fees, and performance testing. 

Seed and plants Expenses for purchases of seeds, plants, and related expenses 
such as seed cleaning, inoculation, rooting hormones, bagging, 
germinating, and delinting. 

Fertilizer and chemicals Amount the farm operation paid for commercial fertilizers, 
lime and soil conditioners, pesticides, insecticides, herbicides, 
fungicides, defoliants, nematicides, fumigants, growth 
regulators, and rodenticides used on crops, pasture, acreage 
idled under government programs, seeds, crop storage 
buildings or seed beds. 

Utility expenses Farm operations' share of expenses for electricity, telephone, 
and water including charges for irrigation water and electricity. 

Labor expenses Expenses for contract and hired labor engaged in "agricultural 
work" during the calendar year. Total cash wages include 
bonuses for all hired workers (including paid family members) 
and employees' share of social security taxes. Costs associated 
with fringe benefits such as insurance, pensions, workers 
compensation, and unemployment compensation are also 
included in labor expense. Wages paid to operators that are not 
hired managers are excluded. 

Fuels and oils Farm share of the operations' purchases of diesel, gasoline, 
liquid petroleum, natural gas, other fuels (kerosene, coal, 
wood), and motor oils and fluids. Includes fuels used for 
heating farm buildings and offices, drying or curing crops, and 
all machinery and equipment (including irrigation pumps). 

Repairs and maintenance Amount paid by the operation for repairs and maintenance of 
motor vehicles, machinery and equipment, irrigation and frost 
protection equipment, farm buildings, the operator's dwelling, 
and any other labor dwellings, fencing, soil conservation 
structures, drainage structures, and any other farm or ranch 
structures (corrals, feedlots, feeding floors). 

Machine-hire and custom work Amount spent by the operation for custom hauling and other 
custom work such as land tillage, planting or seeding, 
harvesting, and soil testing. Custom work is defined as work 
preformed by machines and labor hired as a unit. 

Other variable expenses Includes supplies, motor vehicle registration fees, 
transportation and storage, and all other general business 
expenses (for example, fees paid to accountants or attorneys, 
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registration of purebred animals, travel expenses, postage, and 
magazine subscriptions). 

Fixed expenses Represents costs incurred by the farm operation during the 
calendar year, even when there is no production. 

Real estate and property taxes Expenses for taxes on farm land, buildings, capital 
improvements, machines, livestock, and other property. 
Includes all taxes paid during the calendar year even though 
they may have been levied in another year. 

Interest Amount paid by the farm operation for interest on farm 
business loans and mortgages, land contracts, and other farm 
loans secured by real estate, finance charges for operating 
loans, machinery and equipment loans, or any other interest on 
non-real estate loans. 

Insurance premiums Amount spent by the farm operation for Federal Crop 
Insurance, and the farm share of motor vehicle, liability, and 
blanket policies which provide more than one year's coverage. 

Rent and lease payments Expenses for land rental (including Public Industrial Grazing 
Association land), all vehicles, tractors, farm machinery, 
equipment, and structures leased. 

Net cash farm income This measure indicates the amount of net cash earnings from 
all business sources that a farm generates during the year. 
These funds can be used to repay principal on indebtedness, 
purchase new machinery or equipment, expand the farm 
business, or pay for family consumption or other obligations. 

Nonmoney income An estimated value of items produced and consumed on the 
farm, and the imputed rental value of farm dwellings. 

Value of inventory change The change in the market value of all crops, livestock, or 
purchased inputs from January 1 of the calendar to December 
31. 

Depreciation An allocation of the portion of the original cost of a capital 
asset to each of the estimated years in which the asset will be 
used. The type of depreciation reported on the survey typically 
resembles the figure reported on tax returns. 

Labor, non-cash benefits Includes an estimate of the value of housing or lodging 
provided to workers, meals, fuel, vehicles, utilities, or payment 
in kind. An estimate of the value of products produced and 
consumed on the farm is provided by the survey respondent. 
The imputed rental value of farm dwellings is calculated for 
dwellings located on the farm and is based on rent-to-value 
ratios for different value ranges of the dwelling. 

Adjusted breeding livestock 
income 

The amount of unrecovered investment in breeding livestock 
upon sale, reflecting the difference between gross proceeds 
from the sale and the recognized gain after accounting for 
investment costs. 

Net farm income Net farm income indicates the profit or loss associated with 
current production. It represents the return (both monetary and 
nonmonetary) to farm operators for their labor, management 
and capital after all production expenses have been paid (that 
is, gross farm income minus production expenses). It includes 
net income from farm production as well as net income 
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attributed to the rental value of farm dwellings, the value of 
commodities consumed on the farm, depreciation, and 
inventory changes. 

 
All definitions are provided by the ARMS Data Analysis page, available at 
<https://my.data.ers.usda.gov/arms/data-analysis>.   
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Appendix Table 3. Detailed Basic Block 2 Evaluation of Datasets Used in Case Studies  
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Appendix Table 4. A Detailed Basic Block 3 Evaluation of the Three Datasets
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Appendix C: Code Description (Codes Developed by Danielle Wilson) 

This section outlines the way the codes were constructed for each of the discussed attributes. All 
attributes were coded in either Stata or Jupyter Notebook using Python. (Exact link will be 
provided.) 

Entropy of a Single Random  

The entropy of each variable was computed using Stata. The following preliminary steps were taken:  

1. Data were imported and each variable was specified as being in a discrete or continuous variable 
list.  

2. A global was defined to set the number of intervals all continuous variables should be discretized 
to.  

The following steps were applied in a loop over each discrete variable: 

3. The frequency of each variable’s outcome was computed. Each frequency was then used to 
compute corresponding probabilities (𝑝𝑝𝑘𝑘’s, where each 𝑝𝑝𝑘𝑘 was the observed probability of event 
or outcome 𝑘𝑘).  

4. The probabilities computed in Step 3 were confirmed to be proper (sum up to one).. 
5. The following was computed for each variable’s outcome and stored:−𝑝𝑝𝑘𝑘 log2 𝑝𝑝𝑘𝑘.  
6. Following equation (1), the entropy of each variable was computed by summing the results from 

Step 5, −𝑝𝑝𝑘𝑘 𝑙𝑙𝑙𝑙𝑙𝑙2 𝑝𝑝𝑘𝑘, across all 𝑘𝑘 events.  
7. The normalization, log2 𝑘𝑘, for each variable was computed. The entropy of each variable (from 

Step 6) was normalized using the resulting value and stored accordingly.  

The following steps were then applied in a loop over each continuous variable:  

8. Each continuous variable was discretized into the specified number of intervals (from Step 2).  
9. Steps 3 through 7 were repeated for each discretized continuous variable.  

Stored results from the discrete and discretized continuous variables were reshaped into a table for 
export. The final table contained three columns. The first column contained the names of every variable in 
the data set, and the second and third columns contained the entropy and normalized entropy of each 
corresponding variable, respectively.  

Entropy of Multiple Random Variables (Joint Entropy) 

The joint entropy of every combination of two variables in the dataset was computed using Stata. The 
following preliminary steps were taken:  

1. Data were imported and each variable was specified as being in a discrete or continuous variable 
list.  
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2. A global was defined to set the number of intervals all continuous variables should be discretized 
to.  

3. All continuous variables were discretized according to the specified global in Step 2. The original 
continuous variables were subsequently dropped.  

4. Each  of the remaining variables was indexed by appending a number at the end of each variable 
name.  

The following steps were taken to compute the normalized joint entropy of every combination of 
two variables:  

5. The joint probability of every two combinations of events was computed. A double loop was 
created to call upon combinations of variables using the indexing created in Step 4. The outer 
loop went through all variables, 𝑘𝑘 = 1, … , 𝑟𝑟 while the inner loop went through all but the first 
variable, 𝑗𝑗 = 2, … , 𝑟𝑟. The frequency of unique joint events was collected and used to compute the 
joint probability of every combination of two variables. These probabilities were subsequently 
exported as a separate Stata dataset.  

6. Using the same double looping technique described in Step 5, the number of possible joint events, 
between discrete and discretized continuous variables (𝑘𝑘𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉1 × 𝑘𝑘𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉2) was computed 
and subsequently exported as a separate Stata dataset.  

7. Exported results from Steps 5 and 6 were merged together. Every row in the dataset of joint 
probabilities from Step 5 was a combination of outcomes or events between every possible pair of 
variables. Every row in the dataset of possible joint events from Step 6 corresponded to a pair of 
variables. Consequently, a many to one merge was used to combine the later dataset (from Step 6) 
to the former (Step 5).     

8. Using the merged dataset from Step 7, every joint probability was used to compute 
−𝑤𝑤𝑘𝑘𝑘𝑘 log2 𝑤𝑤𝑘𝑘𝑘𝑘 for every combination of events. 

9. Joint entropies were computed by following equation 2 and summing the components computed 
in Step 8 over every pair of variables.  

10. The number of possible joint events was then used to compute a normalization, 
log2(𝑘𝑘𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉1 × 𝑘𝑘𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉2). 

11. The normalization computed in Step 10 was applied to the joint entropies computed in Step 9.  
12. Results from Step 11 were formatted into a lower triangular matrix where each cell contained the 

normalized joint entropy of two variables. This matrix was subsequently exported.  

Mutual Information of Multiple Random Variables 

The mutual information of every two combinations of variables in the dataset was computed using Stata. 
The same four preliminary steps outlined in calculating the entropy of multiple variables were taken in 
preparation. Once completed, the following steps were taken:  

1. The joint probability of every two combinations of events was computed. A double loop was 
similarly created to call upon combinations of variables using the indexing created during the last 
preliminary step. The outer loop went through all variables, 𝑘𝑘 = 1, … , 𝑟𝑟 while the inner loop went 
through all but the first variable, 𝑗𝑗 = 2, … , 𝑟𝑟. The frequency of unique joint events was collected 



 
 
 

75 

and used to compute the joint probability of every combination of two variables. These joint 
probabilities were exported as a sperate Stata dataset.  

2. The frequency of each individual variable’s outcomes was computed. These frequencies were 
then used to compute corresponding probabilities (𝑝𝑝𝑘𝑘’s). These individual probabilities were 
similarly exported as a separate Stata dataset.  

3. The exported dataset from Step 1 was opened and combined with the exported dataset from Step 
2 using a many to one merge. The resulting dataset contained both joint and individual 
probabilities.  

4. The joint and individual probabilities were used to compute 𝑤𝑤𝑘𝑘𝑘𝑘ln � 𝑤𝑤𝑘𝑘𝑘𝑘

𝑝𝑝𝑘𝑘𝑞𝑞𝑗𝑗
�, where 𝑤𝑤𝑘𝑘𝑘𝑘 is the joint 

probability of outcome 𝑘𝑘 from the first variable and outcome 𝑗𝑗 from the second variable, 𝑝𝑝𝑘𝑘 is the 
individual probability of outcome 𝑘𝑘 from the first variable, and 𝑞𝑞𝑗𝑗 is the individual probability of 
outcome 𝑗𝑗 from the second variable.  

5. Following equation 5, the mutual information between every two combination of variables was 
then computed by summing the components calculated in Step 4 over the corresponding pair of  
variables.  

6. Results from Step 5 were formatted into a lower triangular matrix where each cell contained the 
mutual information between two variables. This matrix was subsequently exported. 

Condition Number 

The condition number of combination of variables was computed using Stata. Data were imported and a 
list of variables by type (costs, benefits, inputs, attributes, and signals) were created using globals. Note 
that these lists were not mutual exclusive.  

The “collin” command authored by Philip B. Ender from the University of California’s Statistical 
Consulting Group was used to extract the condition number of each combination of variables by type4. 
The “collin” command computes a variety of diagnostic measures, including the condition number. Once 
run, the results for all measures are stores as scalars. The scalar for the condition number can be called 
and saved accordingly.   

Data Integrity (Benford’s Law) 

The empirical distribution of each variable with respect to Benford’s law was computed in Jupyter 
Notebook using Python. The following packages were imported:  

• sympy 
• math 
• pandas 
• numpy 
• fsolve (spicy.optimize) 

 
4 Additional details can be found in the command’s help file available at 
<https://stats.oarc.ucla.edu/stat/stata/ado/analysis/collin.hlp>.  
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The following steps detail how the metric for each continuous variable was constructed. These steps 
can be easily modified to compute the metric for the entire dataset.  

First, the following preliminary steps were taken:  

1. Data were imported and each variable was specified as being in a discrete or continuous variable 
list. A data frame containing only continuous variables was created as this analysis cannot be 
applied to discrete variables.  

2. Every element in the data frame of continuous variables (from Step 1) was converted to string 
format.  

3. Using the resulting data frame (from Step 2), for each continuous variable, the first digit of every 
observation was extracted and stored as a new variable with the suffix “_first”.  

4. Using the “series.value_counts” function, a loop was run over all variables with the “_first” 
suffix. This loop collected the frequency of observed unique values. For each variable, the 
observed unique value was a non-zero digit, and the corresponding frequency (of observance) 
was in percent form. The frequency data for each variable was stored as a separate data frame.  

5. The data frames with stored frequency data (corresponding to each variable from Step 4) were 
merged into one large data frame. The first column of this merged data frame contained the 
possible unique values of non-zero digits (1 to 9). The remaining columns contained the 
corresponding observed frequencies for each variable.   

The subsequent steps were taken to compute the empirical distribution of digits for each continuous 
variable:  

6. Using the merged data frame of frequencies from Step 5, the geometric mean of each variable 
was computed and stored.  

The functional form of the empirical distribution using the variable’s geometric mean is the solution 
to the optimization problem detailed in equation (9). The Lagrange multiplier within the functional form 
of this normalized solution, 𝑝𝑝∗(𝐷𝐷) = 𝐷𝐷−𝜆𝜆/∑ 𝐷𝐷−𝜆𝜆

𝐷𝐷 , needs to first be solved for. This can be done by 
substituting 𝑝𝑝∗(𝐷𝐷) back into the observed moment constraint, i.e., the geometric mean, and solving for 𝜆𝜆.  

7. The “spicy.optimize.fsolve” function was used to solve for 𝜆𝜆. This step was repeated for each 
variable using its corresponding geometric mean from Step 5. The resulting value for each 
variable’s 𝜆𝜆 was stored in a new data frame. The first column of this data frame contained each 
variable’s name and the second contained the variable’s solved value of 𝜆𝜆. 

8. The Lagrange multipliers were then used to calculate the denominator of  𝑝𝑝∗(𝐷𝐷), ∑ 𝐷𝐷−𝜆𝜆
𝐷𝐷 . This 

denominator was added as an additional column to the data frame created in Step 7.   
9. The numerator for every digit, 𝐷𝐷−𝜆𝜆, was then calculated for each variable and divided by the 

previously solved for denominator to compute  𝑝𝑝∗(𝐷𝐷). The results for 𝑝𝑝∗(𝐷𝐷) were stored and 
appended as an additional columns to the data frame from Step 8. The resulting data frame 
appears as follows:  
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Variable Lagrange Value Denominator Probability  
D = 1 

… Probability  
D = 9 

variable1 Created in Step 
7. 

Added in Step 
8. 

Added in Step 
9. … Added in Step 

9. … 
variable N 

10. For each variable, the solved values of 𝑝𝑝∗(𝐷𝐷) for all digits were summed to ensure that they 
together equal one.  

The resulting data frame from Step 9 was exported as a CSV file.  

 ‘Cumulative Entropy’ or ‘Entropy Convergence’ of Data  

The cumulative entropy of every variable in the dataset was computed using Stata. The following 
preliminary steps were taken:  

1. Data were imported and each variable was specified as being in a discrete or continuous variable 
list.  

2. A global was defined to set the number of intervals all continuous variables should be discretized 
to.  

3. An “id” variable was used to numerate the observations in the dataset.  

The following steps were applied in a loop over each discrete variable: 

4. The normalization, log2 𝑘𝑘, for each variable was computed. 
5. An empty variable for the variable’s cumulative entropy was created. This empty variable will be 

filled over the course of the subsequent steps.  
6. The total number of observations in the dataset was stored as a local macro and used to define the 

range of an inner loop. This inner loop, which started from the first observation and ran until the 
last observation (defined by the local macro), was indexed by 𝑛𝑛 and did the following:  

a. Computed the frequency of each variable’s outcome among observations with an “id” 
value (see Step 3) less than or equal to 𝑛𝑛. Using these frequencies, probabilities (𝑝𝑝𝑘𝑘’s, 
where each 𝑝𝑝𝑘𝑘 is the observed probability of event or outcome 𝑘𝑘) were computed and 
stored. These probabilities were summed to ensure that they together equal one. 

b. Using the probabilities from Step 6a, the following was computed for each variable’s 
outcome5: −𝑝𝑝𝑘𝑘 log2 𝑝𝑝𝑘𝑘.  

c. Following equation (1), the cumulative entropy of each variable was computed by 
summing the results from Step 6b, −𝑝𝑝𝑘𝑘 𝑙𝑙𝑙𝑙𝑙𝑙2 𝑝𝑝𝑘𝑘, across all 𝑘𝑘 events.  

d. The entropy calculation from Step 6c was normalized using log2 𝑘𝑘 calculated in Step 4. 
The normalized entropy of each variable was saved in row 𝑛𝑛 of the (originally empty) 
cumulative entropy variable created in Step 5.  

7. The cumulative entropy variable created in Step 5 (now filled) was then plotted as a connected 
line graph. The vertical axis of this plot was cumulative entropy value corresponding to the first 𝑛𝑛 

 
5 Note that steps 6b through 6d will use the subsample of observations with an “id” value less than or equal to 𝑛𝑛.  
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observations of the sample. The horizontal axis details the percent of the sample used to compute 
the corresponding cumulative entropy value.  

The following steps were applied in a loop over each continuous variable: 

8. Each variable was discretized into the specified number of intervals from Step 2.  
9. Steps 4 through 7 are repeated for each discretized continuous variable.  

Information Compression – The Shannon Limit  

Computation of the dataset’s Shannon Limit was done in Jupyter Notebook using Python. The following 
packages were imported:  

• sympy 
• math 
• pandas 
• numpy 
• struct 
• collections 
• groupby 

The following preliminary steps were taken:  

1. Data were imported and each variable was specified as being in either a discrete, 
continuous or string variable list.  

2. A function to convert text to bits was defined6.  This function was not used when 
computing the Shannon limit for the sample dataset from Craig, Greene, & 
Versaci (2015) as all variables were numeric (either discrete or continuous). 
However, this function was added for future use for any  dataset the may contain 
string variables.  

Once data were prepared and organized, and all needed functions defined, the following steps were 
taken to compute the Shannon Limit: 

For continuous variables:  

3. All data values across all continuous variables were concatenated into a single 
list. There were 62 observations and seven continuous variables in the sample 
dataset. Thus, the resulting list contained 434 (=62 x 7) elements.   

4. Every element from the resulting list (from Step 3) was converted to double-
precision floating-point format (IEEE 754 binary64) and stored as an element of 
a new list.  

 
6 This function was recommended by a user from Stack Overflow. Discussion of text to bit conversion and the 
recommended definition is available at <https://stackoverflow.com/questions/7396849/convert-binary-to-ascii-and-
vice-versa>. 
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Note that alternative binary formats can be used with alternative degrees of precision. The resulting 
Shannon Limit should be robust to whatever chosen format.   

For discrete variables:  

5. All data values for all discrete variables were concatenated into a single list. The 
sample dataset contained 6 discrete variables, resulting in a list containing 372 
(=62 x 6) elements.  

6. Every element from the resulting list (from Step 5) was similarly converted to 
double-precision floating point format and stored as an element of a new list. 

Note that if the data contained string variables, steps 3 and 4 would be repeated for this subset of 
variables and the text to bit function (defined in Step 2) applied accordingly.  

7. Lists with data converted into binary form (from Steps 4 and 6) were 
concatenated into one large list.  

8. The number of zeros and ones from the resulting list (Step 7) were counted. The 
number of zeros and ones were then summed together to determine the total 
number of bits.  

9. The formula for the Shannon limit (equation 11) was then followed.  
10. The elements needed to compute the formula, including 𝜋𝜋, K and N, and the 

Shannon Limit, Z, were organized into a data frame (with one observation) and 
exported as a CSV file.  
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