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1 Introduction

In the US, larger cities have greater mean labor income than smaller cities. This may arise

because productive cities become large cities, high ability people sort into productive cities

and because an agglomeration effect delivers an added productivity advantage to working in

large cities. The urban economics literature provides empirical support for all three of these

mechanisms.

Large cities are also costly places to live in. Higher housing costs in large cities are a key

countervailing force that reduce the incentive for even more people to live in large, productive

cities. Tax systems may act, in practice, as a countervailing force. For example, Albouy (2009)

calculates that workers with the same skills pay 27 percent more in US federal taxes in high-wage

cities than in low-wage cities. This calculation raises the issue of the degree to which the tax

system should be a countervailing force in models that can account for differences in earnings

distributions and housing rental rates across cities. Thus, do urban features (e.g. features

leading to the productivity advantage and higher housing costs of large cities) substantially

alter traditional normative views about optimal labor income taxation?

Traditional thinking about optimal taxation stems from optimal tax formulae. Such formulae

link optimal tax rates at given income levels to a small number of theoretical determinants: a

labor supply elasticity, a term reflecting redistributional social preferences and a local property

of the shape of the income distribution. However, the economic model underlying such formulae

does not account for several features of urban models. For example, a tax reform in urban

models induces changes in housing prices, migration across cities and changes in local wage

rates via agglomeration effects. While we show that all of these effects are relevent in theory

as determinants of optimal tax rates, none of these responses are accounted for in traditional

optimal tax formulae.

This paper has two main contributions. First, an optimal labor income tax formula for urban

models is derived that generalizes the formulae in Diamond (1998) and Saez (2001). The formula

for urban models has terms that capture traditional forces and a new term that highlights

nontraditional forces. These nontraditional forces arise from the impact of a tax reform on

local housing prices, local wage rates and on net tax revenue changes due to migration. At

an optimal (utilitarian) tax schedule, when such a reform changes neither local housing prices,

local wages nor net tax collection from migration across cities, then the new term is zero and

optimal tax rates are determined entirely by traditional forces.

Second, the paper carries out a quantitative model assessment. A benchmark model is cali-

brated to best match the earnings distributions, housing tenure status and housing rental rates

in large and small US cities. Within the benchmark model we highlight three main findings: (i)
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the optimal income tax rate schedule is U-shaped, (ii) nontraditional forces raise the optimal

tax rate schedule at all income levels and (iii) moving from the US income tax system to an

optimal income tax system induces agents with low skill levels to leave large, productive cities

and agents with high skill levels to move to large, productive cities.

These three findings each follow from a compelling intuition. First, the U-shaped tax rate

schedule is dictated by traditional forces as argued previously in the optimal tax literature.

Specifically, the L-shaped inverse hazard rate, a robust feature of the US labor income distribu-

tion, and a relatively flat labor supply elasticity as a function of labor income are two important

determinants of the fall in tax rates at low income levels. Second, the key force which raises

the optimal tax rate schedule, above the level dictated by traditional forces, is that there is

an extra redistributional welfare benefit of a labor income tax increase in urban models that

is not present in traditional models. When a tax increase decreases housing rental rates, then

an extra redistributional benefit occurs when high marginal utility agents are disproportionally

renters as a decrease in rental rates shifts consumption to high marginal utility renters and away

from low marginal utility landlords. We document in US data that low earnings households

are disproportionally renters. Third, the intuition for why low skill agents leave large, high-

productivity cities is that optimal income transfers are much larger, for low earnings agents,

under an optimal (utilitarian) tax schedule than under the US tax-transfer system. Low skill

agents, who were nearly indifferent to living in large or small cities under the US system, are

now better off in small cities. This occurs as their marginal utility of (non-housing) consump-

tion is larger in small cities so that increased transfers lead to a larger utility gain in small

cities.

We explore the robustness of these three findings. First, all three findings hold when housing

supply is endogenous. When model housing supply elasticities match US estimates, then urban

features raise optimal income tax rates but the magnitude of this effect is smaller than in

the benchmark model. Endogenous housing supply moderates the fall in housing costs after a

reform that increases income taxes and, thus, moderates any beneficial redistributive effects.

Second, when agglomeration effects of city size on local wage rates are calibrated to match

estimates from micro data, then the impact of an income tax reform on local wage rates is

minimal and is in opposite directions in small and large cities. Optimal tax rates are nearly

unaffected. Thus, while agglomeration effects enter the optimal tax formula and are a central

feature of many urban models, they play almost no quantitative role in shaping optimal labor

income tax rates when the model is calibrated to US data on small and large cities.

The paper is organized in six sections. Section 2 highlights the literature most closely related

to our contribution. Section 3 documents urban facts that we use to calibrate the model.

Sections 4 presents two optimal tax rate formulae and an illustrative example. Section 5
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presents a quantitative evaluation of optimal taxation. Section 6 discusses the main results.

2 Related Literature

Three literatures are most closely related to our work.

Urban Empirics: Eeckhout, Pinheiro and Schmidheiny (2014), Autor (2019) and Albouy,

Chernoff and Warman (2019), among many others, show that average wage rates or housing

rental rates increase with city size or city density. Glaeser and Mare (2001), Combes, Du-

ranton and Gobillon (2008), Bacolod, Blum and Strange (2009) and Card, Rothstein and Yi

(2021) document the urban wage premium (higher wage rate in large cities) and its relation

to larger productivity fixed effects for large cities and to ability sorting across cities. Combes

and Gobillon (2015) survey the literature that estimates agglomeration effects on wage rates

due to city size or density.1 The literature summarized above supports the three mechanisms

(city productivity, sorting and agglomeration), stated in the introduction, that can produce

larger mean labor income in larger cities. One urban fact that is central in our work is the

shape of the earnings distribution, rather than the wage rate distribution, by city size. Our

empirical findings on the earnings distribution and housing rental rates are broadly consistent

with previous results.

Applied Models with Cities: A large literature builds on the basic urban-spatial model

in Roback (1982). This model features a location and a housing choice but not an intensive

margin labor decision. The benchmark model used in this paper adds a labor decision, labor-

productivity heterogeneity and locational preference shocks to the Roback model. Adding a

labor decision is critical for connecting to the optimal tax literature. Adding idiosyncratic

locational preference shocks implies that agents are not indifferent to where they live.

Eeckhout and Guner (2018) is close in spirit to our exercise. They conclude that a less

progressive tax system than the US federal income tax system is welfare improving in a model

with multiple cities and that welfare gains are achieved via migration to the most productive

US cities. They do not connect to optimal tax formulae, explain precisely who migrates to

productive cities or account for the vast differences in labor income within cities because their

model has identical workers. In our work, an optimal utilitarian tax function has much larger

transfers to low income households than the US system because of the vast differences in labor

income across households. These transfers lead agents with low skills to leave high-productivity

cities. Coen-Pirani (2021) considers a related analysis that maximizes welfare over the same

1Baum-Snow and Pavan (2012) use a structural model to argue for both static and dynamic wage gains
from agglomeration. De la Roca and Puga (2017) argue that greater rates of learning are part of the benefit of
working in large cities.
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two-parameter class of tax functions used by Eeckhout and Guner (2018). Two key differences

from our work are that his analysis abstracts from housing but is based on a dynamic model.

Optimal Tax Models: Mirrlees (1971), Diamond (1998) and Saez (2001) derive optimal

non-linear tax formulae, whereas Sheshinski (1972) and Dixit and Sandmo (1977) derive op-

timal linear tax formulae. We derive optimal linear and non-linear tax formulae that apply

to urban models with location and housing choice and agglomeration effects on wage rates.

Sachs, Tsyvinski and Werquin (2020) formalize and extend the variational approach to optimal

taxation used by Saez (2001). We follow Sachs et al. (2020) and Chang and Park (2020) in

applying these methods to derive optimal tax formulae in models where prices and wage rates

are endogenous.

The urban setting in our work, featuring locational choice and endogenous housing prices,

naturally combines insights from the literature on optimal taxes with discrete choices (Roth-

schild and Scheuer, 2013; Ales and Sleet, 2020, Fajgelbaum and Gaubert (2020)) and with

endogenous commodity prices (Kushnir and Zubrickas, 2021; Jaravel and Olivi, 2021). Roth-

schild and Scheuer (2013) model occupation choice as a discrete choice that affects agents’

productivity; in our urban setting, the location choice affects both an agent’s productivity

and the price paid for housing - a feature not captured by the Rothschild-Scheuer framework.

Ales and Sleet (2020) derive optimal tax formulae in models with discrete, income-generating

choices such as a locational choice. Our formula applies to a class of urban models with dis-

crete and continuous income-generating choices. A continuous, intensive-margin labor choice

is essential for our formula to connect to standard optimal labor income tax formulae. Kush-

nir and Zubrickas (2021) study how the redistributional role of changes in commodity prices

affects optimal income taxation. They illustrate that accounting for the redistributional role of

housing price changes shifts optimal income tax rates upward. Our work differs in (i) building

a multi-city model with locational choice, (ii) calibrating model parameters to match the US

income distribution by city types and the structure of US housing ownership, (iii) assessing

the importance of agglomeration. Kessing, Lipatov and Zoubek (2020) derive a formula for the

optimal labor income tax rate for a model with locational choice. Our work differs as: (i) they

abstract from housing and agglomeration - central features of urban models, (ii) their model is

based on heterogeneous migration costs, (iii) their formula applies to two regions, whereas our

formula holds independent of the number of city types or the number of cities of a given type

and (iv) the mathematical tools are different.
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3 Some Urban Facts

This section characterizes the distribution of earnings, rental rates for housing, housing tenure

status and rent-income ratios for US cities in different size classes. A city is defined as a

core-based statistical area (CBSA), which is a group of counties that are socioeconomically

connected to an urban center by commuting ties.2 Cities are categorized into two groups based

on whether their population in the 2010 Census is more than a cutoff level equal to 2.5 million.

Household Earnings Distributions

We use earnings data from the Annual Social and Economic Supplement (ACES) of the

Current Population Survey (CPS) for the year 2018. We define household earnings as the

pre-tax wage and salary income of the head plus that of the spouse. We restrict samples to

households with positive earnings and drop households in which the hourly wage of the head

or the spouse is below half of the minimum wage rate. We also exclude households whose

cities of residence are not identified by CPS. The final sample includes 34,447 households in

260 identified CBSAs.3
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(a) Conditional densities (b) Tail coefficients (c) Inverse hazard rates

Notes: In Figure 1(a) kernel densities are constructed with Epanechnikov kernel with bandwidth 0.2. In
Figure 1(b) tail coefficients are defined as ȳ(y)/y for each earnings level y. In Figure 1(c) inverse hazard rates
(1−Fy(y))/yfy(y) are calulated based on Figure 1(a). Household weights are applied. The vertical lines denote
the location of the 90th and 99th percentile of household earnings.

Figure 1: Earnings Distribution by City Types

Figure 1(a) plots the (conditional) earnings distribution for each of the two city types, mea-

sured by the kernel densities. The large city distribution is shifted to the right compared to

the smaller city distribution. This shift implies the 21 percent difference in mean household

earnings across small and large US cities documented in Table 1. The tail coefficient ȳ(y)/y

2We use the definitions released by the Office of Management and Budget (OMB) in 2013.
3CPS uses a rank-proximity swapping approach, instead of top-coding, to deal with high income levels. The

approach is designed to maintain the distributional information of income in the right tail of the distribution.
Appendix A.1 describes sample selection, swapping, the construction of the household earnings measure and a
number of sensitivity checks.
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at threshold y is defined as the ratio of average earnings ȳ(y) above the threshold y to the

value of the threshold y. The empirical tail coefficients are very similar in small and large US

cities. Figure 1(c) also plots the inverse hazard rate (1 − Fy(y))/yfy(y) implied by the esti-

mated conditional densities, where Fy and fy denote the distribution function and the density

of earnings.4 The inverse hazard is important as it enters traditional optimal tax formulae and

our optimal tax formula. The inverse hazard is one of the key determinates for how optimal

tax rates vary with income. Our quantitative assessment, which calibrates model parameters

to match the US labor income distribution by city type, finds that the inverse hazard at the

model’s optimal allocation closely resembles the inverse hazard rate in CPS data.

City Size

Among the 260 identified CBSAs in CPS data, 239 cities are in the small city group and 21

cities are in the large city group. The small city group has an average population (from the

2010 Census) of 0.53 million and the large city group has an average population of 5.67 million.

The ratio of average population is 5.67/0.53 = 10.70 so that large cities are more than 10 times

larger than small cities.

Table 1: Urban Facts

Description Value Source

Number of Large Cities N1 = 21 CPS 2018
Number of Small Cities N2 = 239 CPS 2018
Average Labor Income Ratio ȳ1/ȳ2 = 1.21 CPS 2018
Population Ratio ˉpop1/ ˉpop2 = 10.7 Census 2010
Rental Price Ratio p̄1/p̄2 = exp(0.375) = 1.455 ACS 2018
Housing Share 0.284 ACS 2018
S.d. of Net Rental Income Share 0.858 CPS 2018

Housing Rental Prices

We extract city rental price indexes via a hedonic regression similar to Eeckhout et al. (2014),

taking into account differences in housing characteristics using American Community Survey

(ACS) data for the year 2018. Specifically, we run the following cross-sectional regression:

log(pi) = αc(i) + βXi + ui, (1)

in which i indexes a household, pi is the monthly rent, c(i) denotes the city of household i, Xi

is a vector of housing characteristics, and ui is the error term. The estimated city fixed effects

4The inverse hazard (1 − F (y))/yf(y) = (y/y)γ/[yγ(y/y)γ−1(y/y2)] = 1/γ and the tail coefficient ȳ(y)/y =
(γy/(γ − 1))/y = γ/(γ − 1) are constant for a Pareto distribution F (y) = 1 − (y/y)γ . The rough constancy of
the tail coefficient and the inverse hazard suggests that the Pareto distribution is a rough approximation for
the upper tail.
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αc is used as the city-level log rental pricing index. The population weighted average of the log

rental pricing index across cities within each city group is calculated. The average log rental

pricing index of the large city group is 0.375 larger and implies that rents in large cities are 45

percent larger than rents in small cities.5

Housing ownership
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(a) Tenure status (b) Rental income

Notes: Tenure status and rental income are smoothed based on kernel regressions with bandwidth 0.2 of log
earnings. Effective rental income is the sum of rental income received by landlords and imputed rent of houses
that are occupied by the owners. The distribution of effective rental income shares is calculated as the effective
rental income as a ratio to average effective rental income per household multiplied by earnings density.

Figure 2: Tenure Status and Rental Income by Earnings

Figure 2(a) plots the fraction of households that are renters, owner-occupiers, or landlords

at different earnings levels. We construct tenure status with 2018 CPS data, where the sample

selection criteria is the same as that used for constructing earnings distribution facts. Landlords

are defined as households that report non-zero rental income; among the remaining households

in the sample, owner-occupiers and renters are defined according to their reported tenure sta-

tus.6 Renters decline from 60% to 10% as earnings increases from near zero to around 200

thousand, whereas landlords increase from less than 5% to 20%. The tenure status profiles are

somewhat flat above an earnings level of 200 thousand.

Figure 2(b) plots effective rental income defined as the sum of rental income received by

landlords and imputed rental value of houses that are occupied by the owners. The imputed

rental value is calculated as the predicted value of Equation (1) using estimated coefficients

5Appendix A.1 describes housing characteristics, sample selection criteria, and detailed estimation results.
6This partitioning follows Chambers, Garriga, and Schlagenhauf (2009).
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and city fixed effects with the 2018 ACS.7 Effective rental income (blue solid curve) increases

steadily with earnings throughout the earnings distribution, even though the tenure status

profiles become relatively flat in the upper earnings range. The effective rental income share

exhibits a fatter tail compared to the earnings density (dotted black curve), which implies

that housing rental value ownership is concentrated among high-income households. 8 We plot

the net rental income share by earnings level, where net rental income is defined as effective

rental income less housing expenditure — including the rent paid by renters and the imputed

rental value of houses occupied by the owners, and net rental income share is defined as net

rental income divided by average effective rental income. Net rental income is negative for low

income households because a large fraction of households with low earnings are renters. Net

rental income enters our optimal tax formulae. Rental income is distributed unequally even

within earnings groups: the unconditional standard deviation of net rental income share across

households is 0.858.

Expenditure Shares on Housing

We calculate the average rent to before-tax, labor-income ratio for households is 0 .284 using

the 2018 ACS. The average ratio does not vary much across the large and small city size

groups—echoing findings in Davis and Ortalo-Magnè (2011).

4 An Urban Model

This section describes a benchmark urban model, derives optimal tax formulae for the model

and illustrates the optimal tax formulae with a simple example. The tax formulae continue to

hold with minor changes, for several natural extensions of the benchmark model including the

addition of an elastic housing supply, agglomeration effects and a tax system with income and

commodity taxes. This fact motivates the choice of the benchmark model.

4.1 Equilibria of the Model Economy

The primitive elements of the benchmark model are (i) a set of city types S = {1, ..., S}, where

there are Ns cities of city type s ∈ S, (ii) housing endowment Hs in a type s city, (iii) a unit

mass of agents
∑

x∈X F (x) = 1, where an agent’s type x = (z, θ1, ..., θS) ∈ X = Z×Θ describes

an agent’s skill level z ∈ Z and ownership shares in housing (θ1, ..., θS) ∈ Θ, (iv) preferences

U(c, l, h; s) over consumption, labor and housing (c, l, h) in a type s city and independent

7As described in Appendix A.1, we also use the 2019 SCF to impute a rental value to houses other than the
primary residence.

8By construction, the integral of the effective rental income share with respect to earnings equals one.
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idiosyncratic locational preference shocks (η1, ..., ηS) ∼ Fη and (v) tradable goods production

y = zAsl for an agent with skill z ∈ Z, living in a type s city and choosing l units of labor

time.

Agents of type x locate in the type of city s where total maximized utility U(x, s) + ηs is

greatest. One component of utility is based on best choices for consumption, labor and housing,

conditional on locating in a type s city: U(x, s) = U(c(x, s), l(x, s), h(x, s); s) for (x, s) ∈ X×S.

Housing h(x, s) in a type s city can be rented at a rental price ps. The other utility component

ηs is agent specific - what a specific agent gets for living in a type s city. Location choices

determine the mass M(x, s) of type x agents locating in city type s. The government collects

taxes T (y) on labor income y = zAsl to fund government spending G and a common lump-sum

transfer Tr. Ownership shares in housing are normalized to equal 1 in each city type (i.e.
∑

x∈X θsF (x) = 1, ∀s). In the benchmark model Z and Θ are finite sets, but this restriction is

relaxed when we analyze optimal non-linear income taxation.

Definition: Given G and T , an equilibrium is (c(x, s), l(x, s), h(x, s),M(x, s), T r) and (p1, ∙ ∙ ∙ , pS)

such that

1. (c(x, s), l(x, s), h(x, s)) ∈ argmax[U(c, l, h; s) | c+psh ≤ y−T (y)+
∑

r θrprNrHr+Tr, y =

zAsl], ∀(x, s)

2. Distribution: M(x, s) = F (x)
∫

1{U(x,s)+ηs>maxr 6=s U(x,r)+ηr}dFη, ∀(x, s)

3. Government Budget: G + Tr =
∑

(x,s) T (zAsl(x, s))M(x, s)

4. Feasibility: (i)
∑

s M(x, s) = F (x), ∀x, (ii)
∑

x h(x, s)M(x, s) = NsHs, ∀s and (iii)
∑

(x,s) c(x, s)M(x, s) + G =
∑

(x,s) zAsl(x, s)M(x, s).

In all the applications considered in this paper, we focus on a specifc class of locational

preference shock distributions Fη called the generalized extreme value (GEV) distributions.

These distributions allow the equilibrium mass M(x, s) of agent types x located in city type

s to be expressed in semi-closed form which greatly simplifies the analysis. This follows from

McFadden (1978) for shocks associated with the generating function G - see Appendix A.4 for

full details.9

Fη(η1, ..., ηS) = exp(−G(exp(−η1), ..., exp(−ηS))) is a GEV distribution, where G(v1, ..., vS) =

[
∑

s vω
s ]1/ω, ω ≥ 1

9Given the function G chosen, the same result could be obtained by assuming locational preference shocks
are drawn from a Type I extreme value distribution but are scaled by a multiplicative factor 1/ω so that total
utility is U(x, s) + 1

ω ηs.
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Pr(U(x, s) + ηs > maxs′ 6=s U(x, s′) + ηs′) = exp(ωU(x,s))∑
s′ exp(ωU(x,s′))

, ∀x ∈ X

M(x, s) = F (x)[exp(ωU(x, s))/
∑

s′ exp(ωU(x, s′))]

These preference shock distributions imply that a non-zero fraction of each agent type x will

locate in any given city type s. Higher values of ω imply less dispersion in the realization of

these preference shocks. Intuitively, locational choice depends on the relative strength of differ-

ences in locational preference shocks ηs versus differences in the utility component U(c, l, h; s)

determined by location-specific allocations (c, l, h) and local amenities associated with a type

s city.

4.2 Two Optimal Tax Problems

Consider two optimal tax problems. Each problem maximizes utilitarian welfare over the

allocations that can be achieved in an equilibrium of the model under a class of tax functions.

The problems differ in the class of tax functions that are allowed. In problem P1, tax functions

T (y, τ ) on labor income y are restricted to depend on a parameter τ . The focus is on linear

taxation: T (y, τ ) = τy.

Problem P 1 : max
∑

x∈X F (x)
∫

(maxs U(c(x, s), l(x, s), h(x, s); s) + ηs)dFη s.t.

(c(x, s), l(x, s), h(x, s)) ∈ ∪τ∈[0,1) Ω(G, τ )

Ω(G, τ ) = {(c, l, h) : (c, l, h) is an equilibrium allocation, given G, T (y, τ ), τ}

In problem P2 the set of tax functions T is not directly parameterized. Instead, T is the set

of twice differentiable functions. Thus, problem P2 focuses on optimal nonlinear taxation.

Problem P 2 : max
∑

x∈X F (x)
∫

(maxs U(c(x, s; T ), l(x, s; T ), h(x, s; T ); s) + ηs)dFη s.t.

(c(x, s; T ), l(x, s; T ), h(x, s; T )) ∈ ∪T∈T Ω(G, T )

Ω(G, T ) = {(c, l, h) : (c, l, h) is an equilibrium allocation, given G, T}

Theorem 1 presents an optimal linear tax formula. The result generalizes existing formulae

for the optimal linear tax rate to apply to models with cities, locational choice and hous-

ing.10 The formula makes use of the policy elasticities defined below, where y(x, s; τ) =

zAsl(x, s; τ) denotes labor income. The elasticity ε is the elasticity of aggregate earnings

10Sheshinski (1972) and Dixit and Sandmo (1977) derive linear tax rate formulae.

11



E[y] =
∑

(x,s)∈X×S y(x, s; τ)M(x, s; τ) with respect to variation in the net-of-tax rate (1 − τ),

whereas εp
s is the elasticity of the housing rental price ps in a type s city to variation in (1− τ).

ε =
dE[y]

d(1− τ)

(1− τ ∗)

E[y]
and εp

s =
d ps

d(1− τ)

(1− τ ∗)

ps

Theorem 1 is stated in terms of two other terms: g is the income-weighted average marginal

utility of consumption, whereas gH captures redistributional effects arising from changes in

housing rental rates. A tax induced decrease in rental rates redistributes consumption towards

renters (i.e. those with θr = 0 for all city types r) and away from landlords. An agent’s net

rental income in city type r is denoted NetRentr(x, s) ≡ pr(θrNrHr − h(x, s)1{r=s}).

g = E[
y

E[y]

U1

E[U1]
] and gH = E[

U1

E[U1]

∑

r

εp
r

NetRentr

E[y]
]

Theorem 1: [Optimal Linear Tax]

Assume U is twice differentiable, Fη is a GEV distribution and S ≥ 1. Assume an interior al-

location (c(x, s), l(x, s), h(x, s)) solves Problem P1 with τ ∗ ∈ (0, 1) and (c(x, s; τ), l(x, s; τ), h(x, s; τ)) ∈

Ω(G, τ ) are locally differentiable around τ ∗ and (c(x, s; τ ∗), l(x, s; τ ∗), h(x, s; τ ∗)) = (c(x, s), l(x, s), h(x, s)).

If T (y, τ ) = τy, then τ ∗ = (1− g − gH)/(1− g + ε).

Proof: See the Appendix.

The linear tax rate formula contains a housing term gH that is not present in the corresponding

formula for models without housing. In the quantitative applications analyzed in this paper,

the term gH is negative. This occurs when an increase in the tax rate τ lowers housing rental

rates (i.e. εp
s > 0) and when renters have a relatively large marginal utility of consumption

and landlords have a low marginal utility of consumption so that net rental income covaries

negatively with the marginal utility of consumption. In these circumstances, gH < 0 and

an increase in the labor income tax rate achieves an additional redistribution towards high

marginal utility renters and away from low marginal utility landlords by a change in housing

costs. A similar redistributional term is present within the optimal nonlinear tax formula for

the urban model as will be seen shortly.

The class of utility functions considered in Theorem 2 is restricted so as to eliminate income

effects and housing price effects from impacting labor supply. Diamond (1998) presented an

optimal tax formula for utility functions without income effects and showed that the resulting

formula is simplified compared to results in Mirrlees (1971). The Diamond formula is an

important benchmark that clarifies the forces that determine optimal tax rates.

Theorem 2: [Optimal Nonlinear Tax]
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Assume U(c, l, h; s) = u(c− v(l))+w(h)+ as is twice differentiable, Fη is a GEV distribution

and S ≥ 1. Assume an interior allocation (c(x, s; T ), l(x, s; T ), h(x, s; T )) solves Problem P2

and all functions are Gateaux differentiable in the direction τ ∈ T at an optimal tax system

T ∈ T . Then:

(i) E[ T ′(y)
1−T ′(y)

ετ ′(y)y] =
E[U1[−τ(y)+E[τ(y)]+

∑
(x,s) T (y)δτ M+δτ NetRent]]

E[U1]
for all τ ∈ T

(ii) Assume that the distribution F has an associated density f , y(x, s; T ) is strictly increasing

and differentiable in z and that the limits in the D(y∗) term exist. For y∗ > 0:

T ′(y∗)
1−T ′(y∗)

= A(y∗)B(y∗)C(y∗) + D(y∗), where A(y∗) = 1
ε̄(y∗)

, B(y∗) = 1− E[U1|y≥y∗]
E[U1]

,

C(y∗) = 1−Fy(y∗)

y∗fy(y∗)
and D(y∗) = limν→0

E[U1]
∑

s

∫
T (y)δτy∗,ν

mdx+E[U1δτy∗,ν
NetRent]

y∗fy(y∗)ε̄(y∗)E[U1]

Proof: See the Appendix.

Theorem 2(i) presents a general necessary condition. It is derived from the fact that if T ∈ T

is optimal then there is no tax system T + κτ for any κ ∈ R and any τ ∈ T that improves

welfare. This lack of an improvement in welfare at the optimum implies
∑

(x,s)∈X×S U1[−τ +

δτTr + δτNetRent]M = 0 after taking limits as κ goes to zero and applying the logic of the

envelope theorem. The notation δτTr denotes the Gateaux derivative of Tr(T ) in the direction

τ , whereas δτNetRent(x, s) ≡
∑

r δτprθrNrHr − δτpsh(x, s) is the Gateaux derivative in the

direction τ of an agent’s net rental income, fixing the housing choice. Envelope reasoning implies

that an agent’s marginal utility gain to a tax reform τ can be determined by fixing labor and

housing choices and letting consumption adjust by the budgetory impact of the tax reform -

the term in square brackets above. Theorem 2(i) follows from this reasoning after expressing

the transfer response δτTr in terms of a labor response, reflected by the labor elasticity ε, and

a migration response δτM .11

The main result of Theorem 2 is that an optimal tax rate schedule satisfies a formula of the

form T ′(y∗)
1−T ′(y∗)

= A(y∗)B(y∗)C(y∗)+D(y∗). The A(y∗), B(y∗) and C(y∗) terms are similar to the

corresponding terms from the Diamond formula but are stated in terms of labor income rather

than skill. One difference is that A(y∗) is based on an average labor elasticity for those agents

with income level y∗ instead of just one labor elasticity when the model has just one city or

one city type (i.e. S = 1). The main substantive difference is that the D(y∗) term implies that

11Theorem 2(i) can also be stated in contexts where the discrete distribution F (x) is replaced with a con-
tinuous distribution with an associated density f(x). Summation using the mass M is replaced with inte-
gration using the density component m. Thus, E[g] =

∑
s

∫
g(x, s)m(x, s; T )dx is used rather than E[g] =∑

(x,s) g(x, s)M(x, s; T ) and
∑

(x,s) T (y(x, s; T ))δτM(x, s; T ) is replaced with
∑

s

∫
T (y(x, s; T ))δτm(x, s; T )dx,

where m(x, s; T ) = exp(ωU(x,s;T ))∑
s′ exp(ωU(x,s′;T ))f(x).
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optimal tax rates are determined by traditional forces A(y∗)B(y∗)C(y∗) and non-traditional

forces D(y∗).

The D(y∗) term contains two effects: a tax revenue change induced by the migration of

people across city types and a term reflecting redistributional effects arising from changes

in housing rents. When an elementary reform reduces tax collection due to migration (i.e.
∑

s

∫
T (y)δτy∗,ν

mdx < 0), this reduces the D(y∗) term and decreases optimal tax rates as tax

revenue supporting redistributional transfers is lost. When housing rental rates fall after an

elementary reform and marginal utility covaries negatively with net rental income, so that

E[U1δτy∗,ν
NetRent] > 0, this increases the D(y∗) term and increases optimal tax rates. Intu-

itively, this occurs when low earners are disproportionally renters (i.e. NetRent < 0) and high

earners are disproportionally landlords (i.e. NetRent > 0) - a pattern in US data documented

in Figure 2 - so that a fall in housing prices redistributes income towards renters.

The optimal tax rate formula is derived by applying a sequence of reforms τy∗,ν ∈ T , ap-

proximating the “elementary” tax reform τy∗(y) = 1{y≥y∗} as ν approaches 0, to the necessary

condition in Theorem 2(i).12 The elementary tax reform is a step function that raises a tax

of one unit for agents with income above a threshold y∗. This reform isolates the marginal

tax rate T ′(y∗) at a specific income level y∗ on the left-hand-side of the necessary condition in

Theorem 2(i) and its economic determinants on the right-hand side as ν approaches 0.

Theorem 2 is stated in terms of two labor elasticities. ε(z, s; T ) = dl
dr

1−T ′(y(x,s;T ))
l(x,s;T )

is the

elasticity along the non-linear budget constraint determined by perturbing the retention rate

1 − T ′(y(x, s; T )) by a small amount r. The labor choice solves v′(l) = zAs(1 − T ′(zAsl) + r)

for r = 0. This elasticity depends on skill z and not skill and housing ownership due to the

assumption of no income effects on labor choice. ε̄(y∗; T ) =
∑

s
fy(y∗,s)

fy(y∗)
ε(z∗s , s; T ) is the income

density weighted average across city types of the labor elasticity for agents at income level y∗.

Skill z∗s is defined so that y∗ = y(z∗
s , θ, s; T ), ∀θ and the income density fy(y

∗) =
∑

s fy(y
∗, s) is

the sum of the city type density components.

4.3 A One-City Example

To illustrate the tax formulae, consider a simple example that has preferences without income

effects on labor supply and one city (S = 1 and N1 = 1). Example 1, for values of α that are

vanishingly small, approximates the model economy analyzed by Saez (2001, see his Figure 5) in

which Saez concludes that a U-shaped tax rate schedule is optimal based on US data. When α

is small, then the housing component of income and expenditure is also small. For such values,

12Choose τy∗,ν(y) := 1
2 + 1

π arctan( y−y∗

ν ) ∈ T as the class of functions that approximate the step function
τy∗(y) = 1{y≥y∗}.
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(d) Decomposition, α = 0.010 (e) Decomposition, α = 0.330 (f) Decomposition, Absentee Landlord

Note: In Figure 3 (a)-(c) the skill density fz(z) is chosen pointwise to produce the empirical labor income
density pointwise implied by Figure 1(a). Methods for computing optimal tax rates and calibrating the models
are described in Appendix A.3. The parameter α is calibrated in Figure 3(b)-(c) so that average housing
expenditures as a fraction of labor income equal the US value in Table 1.

Figure 3: Optimal Marginal Tax Rates: Example 1

Example 1 differs from the quantitative analysis in Saez only in that the skill distribution is

inferred from the earnings distribution and the tax system based on more recent US data.

Example 1

U(c, l, h; 1) = (1 − α) log(c− v(l)) + α log h and v(l) = l1+1/γ/(1 + 1/γ), where γ = 0.5

S = 1, N1 = 1, H1 = 1, A1 = 1

T (y) = y − λy1−τ : Heathcote, Storesletten and Violante (2017) estimate τ = 0.181 and

an average marginal tax rate of 0.34.

f(x) = fz(z)f(θ|z). f(θ|z) is implied by θ̄(z)εθ, εθ ∼ LN(−1
2
σ2

θ , σ
2
θ), where θ̄(z) is the

mean effective rental income share. θ̄(z) is constructed to target the net rental income

share from Figure 2 and σθ is chosen to target the standard deviation of net rental income.

Figure 3 (a)-(b)graphs the optimal linear and nonlinear tax rate for two values of α. When the

utility share parameter α is sufficiently small, say α = 0.01, then housing is a small portion (less

than one percent) of an agent’s total expenditures. The model effectively is a model without

housing. When α = 0.330, then the model produces an average share of housing expenditures
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in labor income equal to the US value in Table 1. Figure 3(c) analyzes the case of the absentee

landlord, who owns all the housing in the economy and whose utility does not enter the planning

problem. The absentee landlord case increases the strength of the non-traditional term in the

linear and non-linear tax rate formulae. When all agents are owner occupiers, so that no agent

pays or receives rent, then gH = 0 and E[U1δτNetRent] = 0 and housing price effects would

vanish (take on a zero value) in the optimal tax formulae in Example 1.

Figure 3 shows that the optimal linear tax rate differs across the three models. 13 The prox-

imate reason for the difference is that ‖gH‖ = ‖E[ U1

E[U1]
εp
1

NetRent1
E[y]

]‖ is larger when housing is

valued more (i.e. when α is larger). This is intuitive as the housing price elasticity εp
1 is positive

and NetRent varies more across agents when α is larger.

Case α = 0.01 : τ ∗ = (1−g−gH)
(1−g+ε)

= (1−.595−.000)
(1−.595+.500)

≈ .450

Case α = 0.334 : τ ∗ = (1−g−gH)
(1−g+ε)

= (1−.538−(−.020))
(1−.538+.500)

≈ .500

Absentee Landlord (α = 0.420): τ ∗ = (1−g−gH)
(1−g+ε)

= (1−.638−(−.090))
(1−.638+.500)

≈ .525

To understand how the housing rental price moves with changes in the tax system, we state

this price p1(τ) below for the economies where agents own the housing stock. This expression

is derived from the market clearing condition, where l(x, 1) denotes optimal labor choices.

p1(τ) = α
1−α

[
∫

zl(x,1)dF−G−
∫

v(l(x,1))dF ]

H1
]

The price p1(τ) declines with increases in the tax rate τ , starting from τ > 0, so that the

housing price elasticity εp
1 is positive. This holds for any distribution F (x) and any increasing

and convex v, where l(x, 1) solves v′(l(x, 1)) = (1 − τ)zA1.
14 Since εp

1 is positive, gH in the

linear tax formula is negative when the marginal utility of consumption covaries negatively with

an agent’s net rental income (i.e E[U1NetRent1] < 0). This holds as the model is calibrated

to match the fact that low earners are disproportionally renters and that high earners are

disproportionally landlords in US data as documented in Figure 2.

Figure 3 (a)-(b) show that the optimal nonlinear tax rate schedules are U-shaped and that

income tax rates are larger at all income levels for the model where α = 0.330 compared to

13Optimal linear tax rates are based on computing the welfare objective for equilibria on a fine grid on τ .
We verified that very similar optimal tax rates are implied by using iterative methods to solve the equation
in Theorem 1. Similar iterative methods are employed in Appendix A.3 to compute optimal non-linear tax
schedules.

14Now explicitly state labor as a function of the tax rate: l(x, τ ). Note that (i) d
dτ l(x, τ ) < 0, (ii) the numerator

of the price function contains integrals of the term zl(x, τ ) − v(l(x, τ )) and (iii) d
dτ [zl(x, τ ) − v(l(x, τ ))] =

d
dτ l(x, τ )(z − v′(l(x, τ )) < 0. The last inequality holds as the first-order condition v′(l) = z(1 − τ) implies
z − v′(l) > 0 for τ > 0.
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α = 0.010. To understand this, each term in the formula is calculated. Figure 3 (d)-(f) show

that A(y∗), which is the inverse of the labor elasticity, is somewhat flat with respect to income

and is determined by the inverse of the Frisch elasticity γ = 0.5 after adjusting for the curvature

of the tax schedule. Figure 3 (d)-(f) show that B(y∗) is increasing in y∗ and that C(y∗), the

inverse hazard rate of the earnings distribution, is L-shaped. The inverse hazard rate at the

utilitarian optimal allocation closely approximates the empirical inverse hazard rate in US data

in Figure 1. The optimal tax rate after roughly 200 thousand dollars is increasing as the A

term is roughly flat after this level whereas the B and C terms are increasing. Figure 3(a)-(c)

plot the tax rate implied by the A(y∗)B(y∗)C(y∗) term assuming that the D(y∗) term is zero.

This is a useful way to decompose the tax rate implied by traditional forces A(y∗)B(y∗)C(y∗)

and the tax rate increment implied by nontraditional forces D(y∗).

D(y∗) = limν→0

E[U1]
∫

T (y)δτy∗,ν
mdx+E[U1δτy∗,ν

NetRent]

y∗fy(y∗)ε̄(y∗)E[U1]

In Figure 3 the D(y∗) term accounts for the bulk of the difference in optimal tax rates across

these models as the other terms are nearly the same in all three models. Since all models have

only one city type, the left-most term in the numerator of D(y∗) is zero by construction (i.e.

δτy∗,ν
m = 0) as this term captures changes in tax revenue induced by agents moving across

city types after an elementary tax reform. Thus, the positive and non-negligible D(y∗) term is

due to the non-negligible fall in housing prices after the reform. The housing price term in the

numerator of the D(y∗) term can be restated as follows: cov(U1, NetRent)δτy∗,ν
p1/p1. Thus, this

term is positive when housing prices fall after an elementary reform and when the covariance

of marginal utility with net rental income is negative. This covariance is negative because the

model is calibrated to match the fact that in US data low earners are disproportionally renters

and high earners are disproportionally landlords.

The housing price satisfies the equation below.15 The Gateaux derivative of p1(T ) is deter-

mined by how labor responds to a tax reform. Using the first order condition z(1 − T ′(zl)) =

v′(l), the labor elasticity δτ l(x; T ) = −ε(x, 1; T ) τ ′(y(x;T ))
1−T ′(y(x;T ))

l(x; T ) and Lemma A1 in Appendix

A.5, the housing price response to an elementary tax reform is robustly negative. The intuition

is that an elementary tax reform at income level y∗ leads agents with incomes slightly above y∗

- see Figure A.5 in the Appendix - to reduce labor so that post-reform labor income is below

y∗, avoiding the increased taxes associated with the reform. This reduces the rental price of

housing p1 just as in the linear tax case.

15The only difference, compared to the analysis for the linear tax, is that l(x; T ) is the solution to z(1 −
T ′(zl)) = v′(l). When T ′ is weakly increasing in income and v is increasing and convex there is at most one
solution to this equation.
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p1(T ) = α
1−α

∫
zl(x;T )dF−G−

∫
v(l(x;T ))dF

H1
and δτp1(T ) = α

(1−α)H1

∫
(z − v′(l))δτ ldF

limν→0 δτy∗,ν
p1(T ) = − α

(1−α)H1
ε(z∗, 1)y∗ T ′(y∗)

1−T ′(y∗)
< 0

5 Quantitative Assessment

This section calibrates the benchmark model when the empirical focus is on large and small

US cities, determines the quantitative properties of optimal labor income taxation and explores

the robustness of these properties in several directions.

5.1 Benchmark Model

Preferences

The utility function U has a constant Frisch elasticity of labor supply γ, no income effects on

labor supply and allows for a city-type amenity value as common to all agents.

U(c, l, h; s) = (1− α) log(c− v(l)) + α log(h) + as and v(l) = l1+1/γ/(1 + 1/γ)

Tax function

Heathcote et al. (2017) estimate the parameter τ = 0.181 that controls tax progressivity and

estimate that the average (income weighted) marginal tax rate for households is 0 .34.16

T (y) = y − λy1−τ

Skill and Housing Ownership Distribution

The density f(x) is specified by f(x) = f(z, θ) = fz(z)f(θ|z). It is understood that θ ∈ R+

and for a given agent θ1 = θ2 = θ so that ownership shares are indentical across city types. We

assume that θ = θ̄(z)εθ, εθ ∼ LN(−σ2
θ/2, σ2

θ) so that the conditional density f(θ|z) is induced

by this random variable.

Table 2 summarizes model parameters and their values. Some parameters are preset: the

labor elasticity γ, the number of cities Ns by city types and the tax function parameter τ . The

remaining parameters are calibrated jointly with a nested structure. An outer loop searches over

(ω, fz(z), θ̄(z)) governing the dispersion of locational preference shocks, the skill density and

16They use data on federal and state taxes and account for transfers (AFDC/TANF, SSI, unemployment
benefits, workers compensation among others) and state that the estimated tax function “offers a remarkably
good representation of the actual tax and transfer system”. Benabou (2000), among others, also use this tax
function.
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Table 2: Parameter Values for the Benchmark Model with S = 2
Description Parameter Value Target
Labor elasticity γ 0.5
Housing share α 0.332 Expenditure share from Table 1: 0.284
Preference shock dispersion ω 3.91 Hornbeck and Moretti (2020) elasticities
Number of cities Ns (N1, N2) = (21, 239) CPS data from Table 1
City productivity As (A1, A2) = (1.218, 1) Mean earnings ratio: 1.21 /1 from Table 1
City amenity as (a1, a2) = (−0.063, 0) Population ratio: 10.7 / 1 from Table 1
City housing Hs (H1, H2) = (7.710, 1) Rental price ratio: 1.455 /1 from Table 1
Taxes and spending

T (y) = y − λy1−τ τ, λ τ = 0.181, λ = 1.952 Heathcote et al. (2017); average MTR= 0.34
G G 17.44 G equals model taxes less transfers

Skill distribution fz(z) Densities from CPS in Figure 1
Mean housing ownership θ̄(z) Net rental income share in Figure 2
S.d. of ownership σθ 0.529 S.d. of net rental income share from Table 1

mean ownership shares by skill type. An inner loop sets model parameters (A1, a1, H1, λ, α, σθ)

to exactly match an equal number of model moments: the mean earnings ratio, the population

ratio, the rental price ratio, housing expenditure share (see Table 1) as well as the income-

weighted marginal tax rate and the standard deviation of the net rental income share. It is

understood that small city parameters (A2, a2, H2) = (1, 0, 1) are normalized. The outer loop

sets parameters to minimize the distance between model and data counterpart governing (i)

the city-type earnings distributions (Figure 1(a)), net rental income shares by earnings (Figure

2(b)) and the average elasticity of city employment to city productivity εMs,As .

We use elasticity evidence from Hornbeck and Moretti (2020) to discipline the value of the

model parameter ω governing the (inverse) dispersion in locational preference shocks. Horn-

beck and Moretti (2020) estimate the elasticity of local employment Ms to variation in the local

component As of plant-level total factor productivity (TFP). Local plant-level TFP is a plau-

sible empirical proxy for local productivity As posited in the theoretical model. The average

employment elasticity at the MSA level is εMs,As = 1.88(SE 0.63) so that local employment

increases with local TFP increases.17 To connect our model to this evidence, we compute the

model elasticity of city-type employment to variation in city-type productivity As in large and

small cities. The average model elasticity is εMs,As = 0.67 for the model parameters in Table 2.

When we extend the model to allow endogenous housing supply, the model elasticity is larger

and more closely approximates the average empirical elasticity.

Figure 4 plots the model-implied earnings distributions against their data counterparts. The

density functions are among the targeted moments, whereas the tail coefficients and the inverse

17See Table 3 in Hornbeck and Moretti (2020) for the “combined instrumental variable”. Monte, Redding
and Rossi-Hansberg (2018) provide model-based estimates of the elasticity of local employment to local total
factor productivity. Their estimates range from a low of εMs,As

= 0.5 to a high of εMs,As
= 2.5, at both the

county and commuting zone levels, so that the average elasticity is between these extremes.
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Notes: Appendix A.3 describes calibration and the computation of equilibrium in detail.

Figure 4: Model vs. US Data

hazard are not targeted. Figure 4 also plots the net ownership shares in the data and the

model. Broadly speaking, the model matches the urban facts from Table 1 and aspects of the

distribution of earnings and net rental income shares.

The model is able to approximate the empirical (right) tail coefficients in large and small cities.

The model does this with weak sorting in that the ratio of the skill densities for those agents

living in large (s = 1) and small (s = 2) cities changes only slightly as the skill level z increases.

Claim A1 in the Appendix establishes results that imply that there is no sorting (i.e. the ratio

is invariant to z) for those who are renters in the benchmark model.18 One might speculate

that similar models that display stronger sorting patterns would have difficulty matching the

properties of US tail coefficients in large and small cities.

5.2 Optimal Tax Rates in the Benchmark Model

Figure 5 plots the optimal tax rate schedule and the decomposition based on the tax formula.

The optimal tax rate schedule and the A,B and C terms are similar to results for the one city

S = 1 example in section 4. The tax rate implied by the ABC term, when evaluated at the

18A referee suggested that utility functions that are log in consumption and log in housing are behind this
result, given the class of tax functions.
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solution to the planning problem, is below the optimal tax rate. Thus, the D term is positive

and acts to raise optimal tax rates.
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(a) Optimal Marginal Tax Rates (b) Formula Decomposition

Notes: The optimal linear tax rate is 0.505. Computational methods are described in Appendix A.3.

Figure 5: Optimal Marginal Tax Rates and Formula Decomposition

Why is the D term positive? The left panel of Figure 6 decomposes the D term into two

subcomponents: one is associated with the change in total tax revenue from migration and the

other is associated with the change in housing prices. Figure 6 shows that the overwhelming

contribution comes from the housing price subcomponent. The tax term delivers a negligible

contribution to the D term at all earnings levels.

D(y∗) = lim
ν→0

E[U1]
∑

s

∫
T (y)δτy∗,ν

mdx

y∗fy(y∗)ε̄(y∗)E[U1]︸ ︷︷ ︸
Tax Term

+ lim
ν→0

E[U1δτy∗,ν
NetRent]

y∗fy(y∗)ε̄(y∗)E[U1]︸ ︷︷ ︸
Housing Price Term

.

The top right panel of Figure 6 plots a scaled measure of the Gateaux derivative δτm̂(z, 1)

of the (marginal) skill density component m̂(z, 1) =
∫

m(z, θ, 1)dθ for large-city types when

τy∗(y) = 1{y≥y∗} and y∗ = 300 thousand dollars. Qualitatively similar results hold at other

y∗ values. As shown, only agents within a certain range of skill levels constitute the bulk of

those who move. To see why, recall that the elementary tax reform raises the net taxes paid by

agents with income above y∗. For agents whose skill level puts them below y∗ in small cities

but above y∗ in large cities, the reform raises net taxes for those who choose to remain in large

cities but reduces net taxes for those who choose to remain in small cities. The reform thus

causes some of these agents (those with idiosyncratic preference shocks that leave them nearly

equally well off in large or small cities before the reform) to migrate to small cities. Aggregate

21



tax revenue from these migrating agents then falls due to the city productivity gap: A1 > A2.
19

The change in city choices for agents whose skill levels put them far away from y∗ are more

muted; however, the fall in the housing price in large cities leads some higher skilled agents to

move to large cities (those nearly equally well off in both cities before the reform). Thus, some

of the fall in tax collection from agents who move to small cities is offset by a counter flow

of high-skilled agents to big cities, leading to approximately no change in tax collection from

migration.
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Figure 6: Decomposition of the D Term

Why does an elementary tax reform produce a positive housing price term? The bottom right

panel of Figure 6 plots the percentage housing rental price changes from elementary tax reforms

at different income levels. An elementary tax reform leads to a fall in labor income and a net

migration from large cities to small cities and these effects reduce the large-city and the small-

city housing price by roughly the same proportion. The percentage impact on rental prices is

greatest for elementary tax reforms with income thresholds near the peak of the income density.

Given that rental rates fall by similar percentage values in small and large cities, the sign of

the housing price term is determined by how the marginal utility of consumption covaries with

net rental income. This covariance is negative because the model is calibrated to match the

fact that low earnings households in US data are disproportionally renters and high earnings

households are disproportionally landlords.

What changes when the model of the US tax system is replaced by a utilitarian optimal tax

system? Table 3 shows that in an optimal nonlinear tax system the population of large cities

shrinks, work time falls and there is a welfare gain of 14.8 percent. This welfare gain is measured

as the percentage increase in consumption of all agents which is equivalent, in the benchmark

19More specifically, zA1l(x, 1; T ) > zA2l(x, 2; T ) and T ′ > 0 imply T (zA1l(x, 1; T )) > T (zA2l(x, 2; T )).
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Table 3: Moving from the US Tax System to Optimal Tax Systems

CEV Population share Rental price Output per HH Average hours
Large Small Large Small Large Small Large Small

US - 0.485 0.515 1.455 1 1.210 1 1.051 1

Opt. Linear 14.4% -11.6% 9.8% -13.0% -4.2% -1.1% -23.4% -14.7% -23.5%
Opt. Nonlinear 14.8% -12.3% 10.3% -13.7% -4.9% -0.3% -25.1% -14.9% -26.8%
Opt. HSV 4.5% -3.3% 3.0% -17.1% -9.4% -16.1% -15.2% -11.4% -10.4%

Notes: The rental price, per capita output, and average hours under the US tax system are expressed as ratios

to their respective values in small cities. Statistics under optimal tax systems represent percentage deviations

from their US system counterparts. The first column, CEV (Consumption Equivalent Variation), is computed

as the necessary percentage rise in consumption under the US system to match the welfare level achieved by an

optimal tax system. The optimal HSV system is achieved with tax function parameters (τ, λ) = (0.34, 3.70).

model, to the average utility level achieved in an optimal nonlinear tax system. Interestingly,

the optimal linear tax system plus transfer achieves the vast majority of this welfare gain and

the optimal tax function in the HSV class achieves very little of this welfare gain. Our narrative

is that this is due to differences in transfers at very low labor incomes.

Figure 7(a) shows that high skill agents have a net migration to large, high productivity

cities and that lower skilled agents move to smaller, low productivity cities when moving to an

optimal nonlinear tax system. The percentage change for low skill agents is quite large, more

than a 20 percent decrease. Figure 7 (c) shows that an optimal tax system gives a positive

transfer to those with either small labor income or no labor income, whereas the US system,

as characterized by Heathcote et al. (2017), provides much smaller transfers to low income

households.20

The increase in transfers is a key force driving agents with low skills to live in smaller,

low-productivity cities. Specifically, we prove (see Proposition A1 in Appendix A.7) that the

partial equilibrium response to a small increase in a lump-sum transfer in the model of the

US tax system is to increase the percentage of low-skilled agents, who do not own housing,

living in small, low-productivity cities. This is because the marginal utility of (non-housing)

consumption is larger in small cities so that increased transfers lead to a larger rise in utility

in small cities than in large cities. Thus, a narrative is that an increase in marginal tax rates,

sufficient to finance a greater lump-sum transfer, leads some agents to relocate and that the

relocation decision is only partially offset by the equilibrium reduction in housing prices.

20Many studies, for example Huggett and Parra (2010), find that (utilitarian) optimal tax systems have
greater redistribution to low earnings households than the US tax system.
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Figure 7: Changes in City Location Choices - Moving from US to Optimal Tax

5.3 Validation

Central to the model’s quantitative optimal tax rate results is that model housing rental rates

decrease for tax reforms that raise tax rates on labor income. We estimate the elasticity of hous-

ing rental rates to variation over-time in state-level tax rates, using tax rate data constructed

by Moretti and Wilson (2017) and metropolitan-level housing rents from the Fair Market Rent

series released by the Department of Housing and Urban Development. In a nutshell, the

estimate regresses changes in logarithms of housing rental rates on changes in logarithms of

net-of-tax rates lagged by one period, controlling for metropolitan and year fixed effects.

Table 4: Housing Rent Elasticity in Net-of-Tax Rates: Model vs. Data

Data Model Model
Benchmark Endogenous Housing

Housing Rent Elasticities 0.8242 1.1551 0.7833
(0.3986)

Notes: All elasticities are in net-of-tax rate (i.e. one minus the average tax rate). We estimate the empirical

housing rent elasticity using Fair Market Rents and state-level tax rates. Standard errors are in parentheses.

The model elasticities are obtained by comparing a counter-factual economy with tax rates of a city type at all

income levels raised by 1% from the benchmark. Detailed procedures are described in Appendix A.3.4.

Table 4 shows that the housing rent elasticity is positive and significant. Table 4 also reports

the elasticity in the benchmark model and the model with endogenous housing (see section

5.4.1). The model elasticities fall within one standard error of the corresponding empirical

estimate. Thus the model implications for the rental response to changes in taxes moves in the

same direction and has a similar magnitude to the response found in US data.
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5.4 Robustness of the Optimal Tax Rate Schedule

Three quantitative conclusions from the benchmark model are that (1) the optimal income tax

rate schedule is U-shaped, (2) urban model features raise the optimal tax rate schedule (i.e.

D(y∗) > 0) and (3) adopting an optimal tax system induces agents with low skills to leave

large, productive cities. Figure 5 to Figure 7 highlight these three conclusions.

This section explores the robustness of the first two conclusions to (i) allowing agglomeration

effects and endogenous housing supply, (ii) allowing more than two city types and (iii) allowing

the tax system to tax income nonlinearly and to tax commodity expenditures with proportional

tax rates. Although it is not documented in this section, the third conclusion above is robust

to all of these departures from the benchmark model.

5.4.1 Endogenous Housing Supply and Agglomeration

What is the nature of the optimal tax rate schedule when endogenous housing supply and

agglomeration are allowed? We now analyze models where housing is produced by a constant

returns production function H(Ks, Ls; s), where land Ls is exogenous and an intermediate

input Ks is chosen to maximize housing profit psH(Ks, Ls; s) −Ks. One unit of intermediate

input is produced from one unit of tradable goods production. The ownership shares θ, which

previously were in housing, are now ownership shares in land. Ownership shares now convey

a share of the profit from housing production which are equivalent to land rents pland
s NsLs by

constant returns and price taking behavior. The production function H(Ks, Ls; s) = Kβs
s L1−βs

s

implies that housing supply is of the form Hs = f(Ls, βs)p
ρs
s with constant price elasticity

ρs = βs/(1 − βs). Saiz (2010) estimated the housing supply elasticity ρs for 95 metropolitan

areas with a population over 500,000 and found that the average housing supply elasticity for

large cities (ρ1 = 1.34) is lower than that for small cities (ρ2 = 2.05).21

Figure 8 shows that optimal tax rates in the benchmark model are shifted downward when

housing supply elasticities are set to empirical values for small and large cities. Intuitively,

endogenous housing supply moderates the fall in housing prices induced by an elementary

tax reform. Therefore the D(y∗) term is positive but smaller in magnitude than under the

benchmark model with exogenous housing.

In models with agglomeration, city productivity or city wage As = wage(Ms, s) = ĀsM
γ
s

depends on two components: an exogenous component Ās and an endogenous agglomeration

21All 21 large cities in our Table 1 with a population over 2.5 million are covered in Saiz (2010). The supply
elasticities (ρ1, ρ2) = (1.34, 2.05) imply land shares of the rental value of housing of (1−β1, 1−β2) = (0.43, 0.33).
These are consistent with the land share of US residential housing of 36 percent calculated by Davis and
Heathcote (2007, Table 1).

25



0 200 400 600 800

0.4

0.5

0.6

0.7

0 200 400 600 800

0.4

0.5

0.6

0.7

(a) Endogenous Housing (b) Agglomeration

0 200 400 600 800

0.4

0.5

0.6

0.7

0 200 400 600 800
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(c) Agglomeration + Endogenous Housing (d) Decomposition of D Term

Note: All models are calibrated to match the targets listed in Table 2. Panel (d) plots the decomposition of the
D Term for the model in Panel (c) with agglomeration and endogenous housing.

Figure 8: Optimal Tax Rates with Endogenous Housing and Agglomeration

component Mγ
s that depends on city population Ms(T ) =

∫
m(x, s; T )dx/Ns and the agglom-

eration elasticity γ. The estimates for γ in the literature, as surveyed in Combes and Gobillon

(2015), range from 0.016 to 0.030 using micro data and controlling for observed and unobserved

skill.22 Some papers in the empirical literature use a measure of city size Ms whereas others use a

measure of city density. An agglomeration elasticity of εw,Ms ≡
d wage(Ms,s)

dMs

Ms

wage(Ms,s)
= γ = 0.02

implies that a city with a 10 times larger population will have a productivity that is larger by

a factor 100.02 = 1.047, other things equal.

Figure 8 shows that when γ lies in the range [0, 0.04], then the resulting optimal tax schedule is

almost unchanged from that in the benchmark model without agglomeration effects. 23 Figure

22Combes et al. (2008) estimate an elasticity of γ = 0.030 using French data, D’Costa and Overman (2014)
estimate γ = 0.016 using UK data, Groot, de Groot and Smit (2014) estimate γ = 0.021 using Dutch data.
Combes et al. (2008) argue that regressions based on aggregate data overstate agglomeration elasticities in
practice.

23For any value of γ > 0, all other model parameters are recalibrated. While (Ā1, Ā2) change as γ varies, the
values of (A1, A2) and all other model parameters are unchanged from their values in Table 2.

26



8 examines the impact of adding both endogenous housing supply and agglomeration. The

resulting optimal tax rate schedule is almost the same as the schedule in the model with

endogenous housing supply but without agglomeration.

D(y∗) = lim
ν→0

E[U1]
∑

s

∫
T (y)δτy∗,ν

mdx

y∗fy(y∗)ε̄(y∗)E[U1]︸ ︷︷ ︸
Tax Term

+ lim
ν→0

E[U1δτy∗,ν
NetRent]

y∗fy(y∗)ε̄(y∗)E[U1]︸ ︷︷ ︸
Housing Price Term

+

lim
ν→0

E[U1]E[T ′(y)yεw,Ms(1 + εl,w)
δτy∗,ν

Ms

Ms
] + E[U1(1− T ′)yεw,Ms

δτy∗,ν
Ms

Ms
]

y∗fy(y∗)ε̄(y∗)E[U1]︸ ︷︷ ︸
Agglomeration Term

Agglomeration impacts the D term (see Theorem 3 in the Appendix) in two ways. First,

agents leave large cities (i.e. δτM1 < 0), in response to an elementary tax reform, and this

reduces wage rates and labor supply in large, high-productivity cities and increases wage rates

in small cities. The result is that the tax revenue increases from small cities but decreases

from large cities due to the impact of the reform on city populations and city wages. This

effect is captured by the leftmost term in the numerator of the Agglomeration Term. Second,

agglomeration has a direct impact on an agent’s marginal utility that depends on the change

in wage rates (i.e. εw,MsδτMs/Ms) in the city type where one resides. Thus, an elementary tax

reform has a redistributional effect via the impact on local wage rates. Figure 8 documents that

agglomeration forces have a negligible impact on the D term. Intuitively, this is because (i) the

model implied population changes induced by a tax reform are small in percentage terms at the

optimal tax system and are in opposite directions in small and large cities, (ii) the empirical

elasticity εw,Ms = γ is small and (iii) skill segregation across city types is not extreme at the

optimal allocation. Thus, the magnitude of the D term is determined, at most income levels,

overwhelmingly by the Housing Price term.24

5.4.2 Small Cities, Large Cities and NYC

Many countries have one especially large city, which in US data is New York City (NYC). 25

To analyze optimal taxation and account for one megacity, we group households into three city

groups: those living in large cities (excluding NYC), small cities and NYC. We construct the

earnings distribution and the rental price index for the three city groups following the pro cedure

24For models with endogenous housing, the net rental income term is defined differently as an agent’s positive
rental income is based on land rents so that NetRent(x, s) =

∑
r θrp

land
r NrLr − psh(x, s).

25New York City is identified under the name “New York-Newark-Jersey City, NY-NJ-PA” based on the 2013
CBSA definition.
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in Appendix A.1 and calibrate the model based on the new statistics. Table 4 reports targeted

moments: NYC has average household earnings and a housing rental price that are significantly

higher than the other two city groups.

Table 5: Targeted Moments with One Megacity

Benchmark Megacity

Normalized Population Ratio (N1 ˉpop1, N2 ˉpop2) = (0.940, 1) (N1 ˉpop1, N2 ˉpop2, N3 ˉpop3) = (0.823, 1, 0.147)
Average Labor Income Ratio (ȳ1, ȳ2)/ȳ2 = (1.21, 1) (ȳ1, ȳ2, ȳ3)/ȳ2 = (1.19, 1, 1.33)
Rental Price Ratio (p̄1, p̄2)/p̄2 = (1.455, 1) (p̄1, p̄2, p̄3)/p̄2 = (1.408, 1, 1.716)
Housing Share Full Sample 0.284 0.284

Notes: In the Megacity column, group 1 includes all CBSAs with population greater than 2.5 million except

NYC. Group 2 includes all CBSAs with population smaller than 2.5 million. Group 3 includes only NYC.
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moments as in the benchmark.

Figure 9: Earnings Distribution and Optimal Tax Rates with a Megacity
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Figure 9 plots the earnings distribution in CPS data and the model. As shown, the model

accounts for some of the basic features of the earnings distributions in CPS data. The optimal

tax rate schedule for the megacity model is U-shaped and is similar to the benchmark model.

The D term for the megacity model is positive at all income levels.

5.4.3 Income and Commodity Taxes

We determine the degree to which our quantitative insights on optimal labor income taxation

change in the presence of other taxes. Labor income is taxed nonlinearly as before but now

consumption expenditures and housing rental expenditures are taxed at proportional tax rates

(Tc, Th) = (0.0784, 0.1193), which are set to approximate US values.26 Figure 10 shows the

optimal labor income tax rate schedule in the benchmark model with endogenous housing

analyzed previously in Figure 8 and the same model with (Tc, Th) = (0.0784, 0.1193). Optimal

tax rates are U-shaped but are now lower in the presence of taxes on commodity expenditures.
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Figure 10: Optimal Marginal Income Tax Rates with Commodity Taxes
Note: The model with US commodity tax is recalibrated following the same procedure as the benchmark model
with endogenous housing. Both models have the same level of government spending G. The right panel displays
both the D term that captures urban forces (the housing price and income tax term) and the E term that
captures the impact on revenue from commodity taxes.

Optimal tax rates on labor income follow a formula, where all the terms are as discussed in

section 5.3.1 except that there is a new E(y∗) term. The E(y∗) term captures the impact of an

26Using 2018 Bureau of Economic Analysis data, compute Tc as the ratio of “tax on production” less “property
tax” from BEA Table 3.5 to “consumption” less “housing and utilities” from BEA table 2.3.5. Compute Th as
the ratio of “property tax”, adjusted by the average share of residential structures in total structures investment
(BEA Table 5.4.5), to “housing and utilities”.
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elementary tax reform at income threshold y∗ on aggregate commodity tax revenue.27

T ′(y∗)

1− T ′(y∗)
= A(y∗)B(y∗)C(y∗) + D(y∗) + E(y∗)

E(y∗) = lim
ν→0

E[U1]δτy∗,ν
[ConsumptionTax + HousingTax]

y∗fy(y∗)ε̄(y∗)E[U1]

Figure 10 shows that the D(y∗) term remains positive and acts to increase optimal tax rates

but that the E(y∗) term is negative and depresses optimal labor income tax rates. Intuitively,

the E(y∗) term is negative as an elementary tax reform reduces labor input and labor income.

Therefore, less tax revenue is also obtained, after the reform, from taxing consumption and

housing expenditures - revenue that would have funded a common lump-sum transfer. 28

6 Discussion

The paper has two main contributions: an optimal tax formula and a quantitative assessment

of optimal labor income taxation. The optimal tax formula captures traditional forces by the

ABC term and non-traditional forces by the D term. The D term captures redistributional

effects of a tax reform that operate via changes in local housing prices or wage rates and that

operate via the effect of relocation decisions on aggregate tax revenue.

T ′(y∗)

1− T ′(y∗)
= A(y∗)B(y∗)C(y∗) + D(y∗)

.

When the empirical focus is on small and large US cities, we find that in a benchmark model:

(i) the optimal income tax rate schedule is U-shaped, (ii) urban model features raise the

optimal tax rate schedule (i.e. D(y∗) > 0) and (iii) adopting an optimal tax system induces

agents with low skills to leave large, productive cities. The main force behind a positive D(y∗)

term is that housing rental rates fall after a tax reform that increases taxes on agents with

income beyond a threshold y∗. A decrease in housing rental rates effectively shifts consumption

from high income landlords to low income renters, but is neutral for owner-occupiers.

The quantitative assessment of the benchmark model is limited in at least two ways. First,

the empirical focus is on small and large US cities. We speculate that a richer division of US

households into more than two city types may not substantially change the findings. We group ed

27Define, ConsumptionTax = Tc

∑
s

∫
c(x, s)m(x, s)dx and HousingTax = Th

∑
s

∫
psh(x, s)m(x, s)dx.

28Appendix A.6 contains a more detailed analysis of optimal taxation with taxes on commodity expenditures.
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US households into those living in small cities, large cities and New York City. Although this

analysis features greater dispersion in mean earnings and housing rental rates across city types,

all three findings continue to hold for this richer framework.

Second, the benchmark model abstracts from two natural features of a quantitative urban

model: endogenous housing supply and agglomeration. Nevertheless, extending the model, to

include endogenous housing or agglomeration or both, does not qualitatively change the three

findings. Agglomeration effects have almost no impact on the D term and on optimal tax

rates. This result relies both on the model being consistent with the micro estimates of the

size of agglomeration elasticities for wage rates and on locational preference shock dispersion

being set to best match the elasticity evidence of local employment changes to variation in local

productivity.29 Allowing endogenous housing, consistent with the supply elasticities in small

and large US cities, reduces the upward shift of optimal tax rates but does not eliminate this

effect (i.e. D(y∗) > 0).

Future work might extend the analysis in two directions. First, the analysis focused on

a federal tax system so that taxes paid or transfers received depend on income received or

expenditures made but not on where these occurred. A natural question is the degree to which

a non-federal system (e.g. place-based taxation) can improve upon a federal system. To answer

such a question, the first step is to have an optimal (federal) tax formula as well as a means to

compute optimal tax rates. This paper provides both of these. Second, the quantitative analysis

could be extended to other countries. For example, various media outlets have documented

the degree to which the London real estate market is owned by foreign nationals, a few British

lords and a small number of commercial enterprises with potentially concentrated ownership.

The Mirrlees Review (2011) is silent on how such an ownership structure and the distribution

of labor income across cities might shape normative views on optimal taxation in the UK. Our

work provides tools to begin such an analysis.

29Agglomeration may potentially play a greater role in impacting optimal income taxation if agglomeration
forces are specific to high-skill groups within a city, rather than just the city population.
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A Appendix

A.1 Empirics

Earnings

Earnings data come from the Annual Social and Economic Supplement (ASES) of CPS. CPS is a monthly

survey of households conducted jointly by the Bureau of Census for the Bureau of Labor Statistics. ASES of

CPS is the supplement survey that is conducted every March, covering a broader set of information than the

main survey, including geographic information, household composition and labor income that are needed for

the analysis.

One advantage of using ASES instead of the monthly CPS survey is that income variables in ASES are

not subject to traditional topcoding, but are instead processed since 2011 with a rank proximity swapping

approach that is designed to maintain distributional information while preserving confidentiality. According to

this procedure, all values of an income component greater than or equal to a swap value threshold are ranked

from lowest to highest and systematically swapped amongst one another within a bounded interval. Swapped

values are also rounded to two significant digits. Different income categories are applied with the procedure

with different swap value thresholds. The Bureau of Census also provides swapped income values for ASES

sample before 2011, which enables the analysis of top income distribution over time consistently.30 We next

describe the details in constructing the household earnings sample.

Weights. ASES person weights (MARSUPWT) are applied for constructing distributions at the person level.

ASES household weights (HSUP WGT) are applied for constructing distributions at the household level.

Definition of household earnings. We start with the sample at the person level. Personal labor income

is defined as the income earned from the job held for the longest time during the preceding calendar year

(ERN VAL), plus wage and salary earned other than the longest held job (WS VAL), if the longest job is not

self employment (as indicated by variable ERN SRCE). Personal labor income is defined to include WS VAL

only if the longest job is self employment. Household earnings are defined as the labor income of the head if a

spouse is not present, or the total labor income of the head and the spouse if a spouse is present.31

Top-coding. Top-coding is addressed for each income component at the person level. The CPS samples after

2011 have been processed with the rank proximity swapping procedure. For samples before 2011, we replace

top-coded income components with the swapped values published by the census that are described above. The

swapped values are still subject to CPS’s internal censoring.32 To address this issue, for each income component

in each year, we fit a Pareto distribution at the tail (excluding censored observations), and replace income values

at the censored level with the mean income above the censored level implied by the Pareto distribution. See

Appendix A.2 for the details.

Sample selection. We exclude households with non-positive earnings. We exclude households in which the

hourly wage of the head or the spouse is below half of the state minimum wage rate in the corresponding sample

30The swapped income values for earlier ASES samples can be acquired via
https://www2.census.gov/programs-surveys/demo/datasets/income-poverty/time-series/data-extracts/asec-
incometopcodes-swappingmethod-corrected-110514.zip.

31A household in CPS may contain multiple families. Based on this definition, only the family that is headed
by the householder is kept.

32The two subcomponents of labor income are censored at 999,999 for the 1994 sample, and 1,099,999 for the
samples after 1995.
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Table A.1: Earnings Distribution with Different Treatment of Imputed Sample
All Sample Drop Imputed Drop Imputed + Reweight

≤2.5m >2.5m ratio / diff ≤2.5m >2.5m ratio / diff ≤2.5m >2.5m ratio / diff

2018

Number of Households 19880 14567 11720 8543 11720 8543
Mean earnings 79792.51 96931.34 1.21 78360.33 97851.16 1.25 77985.35 97295.71 1.25
Std log(earnings) 1.01 1.00 1.03 1.00 1.04 1.01
p10 log(earnings) 9.62 9.85 0.24 9.62 9.85 0.24 9.62 9.85 0.24
p90 log(earnings) 11.94 12.15 0.21 11.92 12.15 0.24 11.92 12.15 0.24

2010

Number of Households 22557 16488 16463 11578 16463 11578
Mean earnings 64169.75 78361.53 1.22 61664.54 78308.47 1.27 61844.00 78664.96 1.27
Std log(earnings) 1.03 1.04 1.04 1.04 1.04 1.05
p10 log(earnings) 9.39 9.55 0.15 9.31 9.55 0.24 9.31 9.55 0.24
p90 log(earnings) 11.73 11.92 0.19 11.70 11.92 0.22 11.70 11.93 0.23

2000

Number of Households 14524 11627 10838 8490 10838 8490
Mean earnings 50329.58 60180.25 1.20 49175.01 60165.21 1.22 49460.49 60435.25 1.22
Std log(earnings) 1.00 1.01 1.00 1.01 1.01 1.02
p10 log(earnings) 9.21 9.39 0.18 9.21 9.39 0.18 9.21 9.38 0.17
p90 log(earnings) 11.46 11.62 0.16 11.44 11.62 0.18 11.45 11.63 0.18

1994

Number of Households 14953 11458 11997 8620 11997 8620
Mean earnings 40651.54 46304.80 1.14 39066.12 46759.14 1.20 39073.66 46792.06 1.20
Std log(earnings) 1.06 1.04 1.06 1.04 1.07 1.05
p10 log(earnings) 8.94 9.10 0.17 8.92 9.10 0.18 8.92 9.10 0.18
p90 log(earnings) 11.23 11.37 0.15 11.20 11.39 0.19 11.21 11.39 0.18

Notes: Columns “Drop Imputed” exclude households in which any labor income component of the head or the
spouse is imputed. Columns “Drop Imputed + Reweight” further adjust sample weights based on the likelihood
of not being imputed, estimated with household characteristics. See the detailed adjusting procedure in text.

year.33 The hourly wage of a person is calculated as the annual labor income defined above divided by total

hours worked. Total hours worked is constructed as the product of weeks worked last year (WKSWORK) and

usual hours worked per week (HRSWK). Since we need to assign households to city groups based on the size of

cities they live in, we also exclude households whose metropolitans of residence are not identified by CPS. Our

final CPS sample consists of 34,447 households from 260 metropolitan statistical areas (MSAs), out of the total

381 MSAs according to the 2013 OMB definitions.

Assigning households to city groups. Starting from 2004, CPS records the population of the CBSA of residence

for each household. For samples before 2004, CPS records the population of the consolidated metropolitan

statistical area (CMSA) for each household. Households are assigned to city groups based on the population

of CMSA (variable HMSSZ) for samples before 2004, and the population of CBSA (variable GTCBSASZ) for

samples after 2004.34

Imputation. We do not drop imputed samples in the benchmark. As a robustness check, we drop households

with imputed income components, and reweight remaining households by the likelihood that they are not

imputed, estimated based on their observable characteristics. To do so, we first drop households in which either

the head or the spouse does not complete the supplement interview (i.e., with variable FL 665 not equal to one).

Among the remaining samples, we assign a household to have imputed earnings if any income component of

the head or the spouse is allocated (based on the allocation flags I ERNVAL and I WSVAL for the two income

subcomponents, respectively). We then estimate a probit model with the dependent variable being whether

33For states that do not have a state-level minimum wage, we use the federal minimum wage.
34The definition of CBSA was first published in 2003. Before 2003, the statistical area definition comparable

to CBSA was CMSA.
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a household is not imputed, and the independent variables being observable household characteristics. 35 We

reweight each household by scaling the original household weight by the inverse of the probability of not being

imputed, estimated from the probit model. Table A.1 compares the earnings distribution statistics for the

benchmark and those with the imputed households dropped and the remaining samples reweighted.36 Figure

A.1 compares the distributional properties across different imputation treatments.

CPS 2018, All Sample Drop Imputed Drop Imputed + Reweight
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(3) Inverse Hazard Rates

Notes: Kernel densities constructed with Epanechnikov kernel with bandwidth 0.2; inverse hazard rates are
implied by the kernel densities.

Figure A.1: Earnings Distribution with Different Treatment for Imputed Sample

Comparison with ACS. As a robustness check, we compare the earnings distribution constructed from the

CPS to that from the American Community Survey (ACS) for the year 2018. We apply the same city group

definition and sample selection criteria to the 2018 ACS. The final sample consists of 593,934 households in 260

35The independent variables include the number of persons in the family, the age and age squared of the
head, the year of education of the head, whether the head is white, and the interactions among these variables.

36Bollinger, Hirsch, Hokayem and Ziliak (2019) document a U-shaped earnings non-response pattern in CPS
data and suggest dropping CPS imputed values and reweighting the resulting sample.
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MSAs.3738

Table A.2: Earnings Distribution, 2018 CPS vs 2018 ACS

CPS ACS
≤2.5m >2.5m ratio / diff ≤2.5m >2.5m ratio / diff

Number of Households 19880 14567 301439 292495
Number of CBSAs 239 21 239 21
Mean earnings 79792.5 96931.3 1.21 78271.8 98335.9 1.26
Std log(earnings) 1.01 1.00 0.98 0.99
p10 log(earnings) 9.62 9.85 0.24 9.62 9.86 0.25
p90 log(earnings) 11.94 12.15 0.21 11.95 12.21 0.25

Table A.2 reports the summary statistics of the earnings distribution of CPS and ACS. As shown, the mean

and standard deviation of earnings in both city types are comparable. Earnings in ACS are top-coded at the

99.5th percentile within a state. The top-coding of earnings data in ACS is reflected in the densities and tail

coefficients of earnings distribution, as shown in Figure A.2. Although the bottom part of the densities and tail

coefficients resemble those based on CPS data, top-coding truncates earnings at certain levels, which leads to

bumps in the density functions and a much thinner tail suggested by the lower tail coefficients compared to the

CPS.
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Notes: Earnings data from the 2018 ACS; city types based on the 2010 population; kernel densities constructed
with Epanechnikov kernel with bandwidth 0.2; tail coefficient defined as ȳ(y)/y for each earnings level y; inverse
hazard rates (1 − Fy(y))/yfy(y) are implied by the kernel densities; household weights are applied.

Figure A.2: Earnings Distribution by City Types, 2018 ACS

Rental price index

We estimate the hedonic regression equation with the 2018 ACS sample described above. The housing

characteristics Xi include the dummy variables for (1) the number of rooms, (2) the number of units in the

37The geographic information available in the original ACS is for Public Use Microdata Areas (PUMAs). We
adopt the procedure used by the IPUMS extraction (https://ipums.org/) to assign PUMAs to CBSAs based
on the 2013 CBSA definition. The procedure assigns each PUMA to the CBSA in which the majority of the
PUMA’s population resided.

38The coverage of CBSAs in CPS and ACS is different. Both data sets cover the 21 largest metropolitan
areas, but differ in their coverage of the smaller city group.
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Figure A.3: Log Rental Index and City Population Size

structure, and (3) the year in which the structure was built. We restrict samples to households for which a

positive monthly rent is reported. We exclude housing units in group quarters and those reported as mobile

homes, trailers, boats, or tents. The estimated regression coefficients are highly significant, as reported in Table

A.3, and the extracted city rental price index is positively correlated with the population size, as shown in

Figure A.3.

Housing ownership

The rent paid by renters and the imputed rental value of primary residences occupied by the owners are based

on the ACS 2018, since the CPS 2018 does not have information on housing characteristics. We use the estimated

Equation (1) to assign rental values to houses that are reported to be owned by the occupiers. To account for

homes other than the primary residence, we impute a profile of values of additional homes relative to primary

residence over household earnings, using the Survey of Consumer Finance (SCF) 2019. Figure A.4 shows that

both the likelihood of owning additional homes and the value of these homes relative to primary residence

increase with earnings; not accounting for additional homes would understate the owner-occupied housing value

of high-income households. We then scale up the rental value of the primary residence by (1+value of additional

homes relative to primary) to arrive at the total rental value of owner-occupied houses.

Housing tenure status and rental income are defined based on the CPS 2018, since the ACS 2018 does not

have information on detailed rental income components. We define a household to be a landlord if it reports

receiving non-zero rental income (RNT VAL). We classify the remaining households to be either renters or owner-

occupiers according to their reported tenure status (H TENURE). For rental income received by landlords, we

scale the reported rental income by a common factor so that aggregate rental income received by landlords equals

aggregate rent paid by renters. This step is necessary as the model targets the mean profile of net rental income,

defined as rental income received net of rent paid, which sums to zero across the population. The standard

deviation of net rental income is calculated across households in the CPS sample. Both the mean profile and

the standard deviation of net rental income is divided by average effective rental income per household, before

being used as calibration targets. The effective rental income is defined as the sum of rental income received

and the rental value of houses that are occupied by owners. Such scaling ensures that the calibration targets
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Notes: All profiles are constructed based on kernel regressions with a 0.2 bandwidth of log earnings. In the left
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Figure A.4: Values of Additional Homes and Its Impact on Effective Rental Income Profile

are unit-free.

Expenditure share on housing

We define the expenditure share on housing as the ratio between monthly rent × 12 and household earnings

defined in Section 3. We use the same sample selection as for constructing household earnings and further

restrict samples to those who report a positive monthly rent. Table 1 in Section 3 reports the population-

weighted median expenditure share for the full sample. The expenditure share is slightly higher in large cities,

masking the fact that the expenditure share actually declines in income level within a city. Table A.1 reports the

ordinary least square estimates by regressing the logarithm of housing expenditure share on the log of household

income. Column (1) reports the coefficient for all samples with a positive rent. The coefficient suggests that on

average the expenditure share declines in household income. Column (2) controls for household characteristics,

including the dummies for household types, for the age of household head, and for the number of persons in a

household. The coefficient for log household income barely changes. Column (3) further controls for the CBSA

fixed effects, and the coefficient becomes slightly larger. To mitigate the effects of measurement errors, Column

(4) replaces the log of household income to the percentile that the household income falls in, and the coefficient

remains significantly negative.39

A.2 Extrapolating a Pareto Tail

Household earnings in Appendix A.1 is constructed by summing two wage and salary income components,

income from longest job and other income, for the head and spouse. For each income component in a sample

39Since in defining the expenditure share, household income appears on the denominator of the ratio, measure-
ment errors in household income will lead to a negative bias in the correlation between the ratio and household
income.
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Table A.3: Hedonic Regression for Monthly Housing Rent
Number of Rooms Year When Built Number of Units in Structure

(Base: 4) (Base: 2000-2004) (Base: 1-family house, detached)
1 -0.213*** 1939 or earlier -0.250*** 1-family house, attached -0.0284***

(0.00778) (0.00746) (0.00568)
2 -0.103*** 1940-1949 -0.322*** 2-family building -0.131***

(0.00591) (0.00870) (0.00576)
3 -0.112*** 1950-1959 -0.277*** 3-4 family building -0.112***

(0.00413) (0.00753) (0.00509)
5 0.0742*** 1960-1969 -0.249*** 5-9 family building -0.0959***

(0.00413) (0.00713) (0.00525)
6 0.151*** 1970-1979 -0.212*** 10-19 family building -0.0477***

(0.00491) (0.00680) (0.00501)
7 0.220*** 1980-1989 -0.136*** 20-49 family building -0.0692***

(0.00643) (0.00685) (0.00589)
8 0.282*** 1990-1999 -0.0483*** 50+ family building -0.0646***

(0.00793) (0.00690) (0.00584)
9 0.331*** 2005 0.0323**

(0.0116) (0.0121)
10 0.349*** 2006 0.0226

(0.0148) (0.0142)
11 0.389*** 2007 0.0240

(0.0240) (0.0160)
12 0.408*** 2008 0.0547***

(0.0272) (0.0151)
13 0.468*** 2009 0.0601**

(0.0454) (0.0190)
14 0.0821 2010 0.0783***

(0.0517) (0.0131)
15 0.384*** 2011 -0.0490

(0.0847) (0.0256)
16 -0.0591 2012 0.0853***

(0.0653) (0.0197)
17 -0.0516 2013 0.120***

(0.0761) (0.0162)
18 -0.0781 2014 0.181***

(0.136) (0.0168)
19 1.195*** 2015 0.228***

(0.0335) (0.0132)
2016 0.252***

(0.0142)
2017 0.274***

(0.0177)
2018 0.290***

(0.0351)

Observations 270045
R2 0.259

Notes: This table reports the estimated coefficients for the hedonic regression for housing rent. The
dependent variable is log of monthly housing rent. The CBSA fixed effects are included in the
regression and are not reported.
Robust Standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table A.4: The Correlation Between Housing Expenditure Share and Household Earnings

(1) (2) (3) (4)
Log HH Earnings -0.741∗∗∗ -0.731∗∗∗ -0.804∗∗∗

(0.00204) (0.00224) (0.00204)
Income Percentile -0.0224∗∗∗

(0.0000693)
Constant 6.617∗∗∗ 6.503∗∗∗ 7.274∗∗∗ -0.0629∗∗∗

(0.0219) (0.0239) (0.0218) (0.00421)
Observations 230870 230870 230870 230870
HH Chars No Yes Yes Yes
CBSA FE No No Yes Yes
R2 0.596 0.613 0.721 0.610

Notes: The dependent variable is the logarithm of housing expenditure share, which is defined as the

ratio between monthly rent × 12 and annual household labor income. Household weights are applied

in the regressions. In Columns (2)-(4), household characteristics include dummies for household

types, for the age of household head, for the number of persons in a household.

Robust Standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

year, we first calculate the empirical cumulative distribution function (CDF) of the income applying the person

weights. We then fit a linear function regressing the log of one minus CDF over log(income), starting from the

95th percentile of the income distribution (inclusive) to the censored level (exclusive). As shown in Figure A.5,

all income components are approximated well by a Pareto tail. The absolute value of the slope of the fitted line

thus gives the estimated Pareto tail index, γ, based on which we assign income beyond the censored level y∗ to
γ

γ−1y∗, which is the mean beyond the censored level according to the Pareto distribution.

A.3 Quantitative Methods

A.3.1 Computing a Competitive Equilibrium

Although decsions could be computed numerically, in practice, this is not needed for the calibrated economy.

Claim A1(1-2) list solutions for best decisions, utility and component density functions.

Claim A1: Let U(c, l, h; s) = (1− α) log(c− v(l)) + α log h + as and T (y) = y − λy1−τ for λ, τ > 0.

1. If v′ is increasing and continuous, then best choices and utility, conditional on location, are stated below,

given (p1, ..., pS)

(i) ∀(x, s), l(x, s) is the unique value l solving v′(l) = zAs(1− T ′(zAsl)) and y(x, s) = zAsl(x, s))

(ii) c(x, s) = (1− α)[y(x, s)− T (y(x, s)) +
∑

s′ θs′ps′Ns′Hs′ ] + αv(l(x, s))

(iii) h(x, s) = α[y(x, s)− T (y(x, s)) +
∑

s′ θs′ps′Ns′Hs′ − v(l(x, s))]/ps

(iv) U(x, s) = log[(1 − α)(1−α)ααp−α
s exp(as)[y(x, s)− T (y(x, s)) +

∑
s′ θs′ps′Ns′Hs′ − v(l(x, s))]]

2. Assume that v(l) = l(1+1/γ)/(1 + 1/γ) for γ > 0 and that f(x) is a density.

(i) l(x, s) = [λ(1− τ)(zAs)1−τ ]1/(1/γ+τ) and y(x, s) = [λ(1− τ)]1/(1/γ+τ)(zAs)
1−τ

(1/γ+τ)+1
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Notes: For each income component, we fit a linear function regressing the log of one minus empirical CDF
over log(income), starting from the 95th percentile of the income distribution (inclusive) to the censored level
(exclusive). The blue solid curves plot the log of one minus CDF. The red curves plot the fitted lines.

Figure A.5: Pareto Tail Approximation for Each CPS Income Component

(ii) y(x, s)− T (y(x, s))− v(l(x, s)) = λ(y(x, s))1−τ − v(l(x, s)) ∝ (zAs)
(1−τ)(1+1/γ)

(1/γ+τ)

(iii) exp(ωU(x, s)) ∝ [exp(as)p−α
s [y(x, s)− T (y(x, s)) +

∑
s′ θs′ps′Ns′Hs′ − v(l(x, s))]]ω

(iv) m(x, s) = f(x) exp(ωU(x,s))∑
s′ exp(ωU(x,s′)) = f(x) [exp(as)p−α

s [y(x,s)−T (y(x,s))+
∑

r θrprNrHr−v(l(x,s))]]ω
∑

s′ [exp(as′ )p
−α

s′
[y(x,s′)−T (y(x,s′))+

∑
r θrprNrHr−v(l(x,s′))]]ω

Proof:

1(i) follows from the necessary condition. 1(ii)–(iii) can be verified by plugging (c(x, s), l(x, s), h(x, s)) into

the relevent necessary conditions. 1(iv) can be verified by plugging choices into U(c, l, h; s). Note that U(x, s)

and y(x, s) are defined, given l(x, s) and (p1, ..., pS).

2(i) follows from 1(i). The equality in 2(ii) is implied by T , whereas proportionality is implied by collecting

terms involving zAs. 2(iii) follows from 1(iv). The leftmost equality in 2(iv) follows from McFadden (1978) as

discussed in Appendix A.3. The rightmost equality follows from 2(iii). ‖

The system of equations to represent the competitive equilibrium is to solve for (p1, ..., pS , T r), such that (1)

the housing demand in each city type equals the fixed housing supply; (2) the transfer equals taxes aggregated

across households less government spending. Labor supply decisions and optimal city type choices can be

evaluated given the rental prices and transfer.40 It is understood that transfers are zero (i.e. Tr = 0) in the

competitive equilibrium of the benchmark model under the US tax system and, thus, the government budget

constraint determines government spending G.

Recall that the joint distribution of (z, θ) is parameterized by the marginal density of skill, fz(z), and the

conditional distribution of θ that follows θs = θ̄(z)εθ, εθ ∼ LN(− 1
2σ2

θ , σ2
θ). We assign values to fz(z) and

40When T is not the tax function analyzed in Claim A1, then labor supply decisions can be solved for
numerically using a bracketing method that applies to potentially non-concave labor supply problems.
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θ̄(z) over a fixed skill grid. The integral with respect to (z, θ) is calculated by first integrating over εθ by

discretizing LN(− 1
2σ2

θ , σ2
θ) into a 7-state probability distribution that is equally spaced over the ±3 standard

deviation range, and then integrating over z using the trapezoidal rule. The skill grid has 10,000 points for z

equally spaced over the log value of z. The range of the skill grid is chosen so that the model implied earnings

distribution covers the range of earnings in the data. The values of fz(z) and θ̄(z) are assigned according to

the calibration procedure that is described in Appendix A.3.2.

A.3.2 Calibration

Some parameters are preset while the remaining parameters are calibrated following a nested procedure. In

the inner loop, the parameters (A1, a1, H1, λ, α, σθ) are set such that a subset of moments at model equilibrium

exactly matches their data counterparts. These parameters govern city productivity As, amenity as, housing

supply Hs, the level parameter λ entering the tax function, preference parameter α and the standard deviation

of ownership σθ. The moments include: mean earnings ratio, population ratio, and rental price ratio between

city types, the housing expenditure share, the income-weighted average marginal tax rate across individuals,

and the standard deviation of net rental income share. The number of parameters and moments are equal and,

thus, we determine these parameters with an equation solver.

In the outer loop, we search for the preference shock parameter, ω, the density function of the skill distribution,

fz(z), defined over a pre-determined skill grid Z, and the mean ownership share by skill type, θ̄(z), also defined

over Z, such that the following model-implied statistics best fit their data counterparts: (i) city densities of

earnings (Figure 1(a)) , (ii) net rental income shares by earnings level (Figure 2(b)), and (iii) the average

elasticity of city type’s population in local productivity. The model-implied elasticity in (iii) is calculated by

perturbing the productivity of a city type s by 1%, and assessing the equilibrium response of the population

of city type s. The elasticity is then averaged across city types with population weights. The data elasticity is

1.88, estimated by Hornbeck and Moretti (2020).

Specifically, denote elas the model-implied average elasticity of city type’s population in local productivity,

fy(y, s) and fd
y (y, s) the conditional densities of earnings from the model and the data, and χ(y, s) and χd(y, s)

the net ownership shares by earnings from the model and the data, respectively.

We solve the problem below.

min
ω,{fz(z),θ̄(z)≥0}z∈Z

∑

z∈Z

∑

s

{[
fy(ȳ(z, s), s)− fd

y (ȳ(z, s), s)
]2

+
[
χ(ȳ(z, s), s)− χd(ȳ(z, s), s)

]2}
+ (elas− 1.88)2,

subject to the equilibrium conditions and the moment matching conditions for the inner subset of parameters

that are described above.

χ(ȳ(z, s), s) =
∫

θ̄(z)εθ

∑
r prNrHr − psh(x, s)
∑

r prNrHr
fθ(εθ)dεθ, x = (z, θ̄(z)εθ, θ̄(z)εθ, ...)

fy(ȳ(z, s), s) =
∫

1
ȳ′(z, s)

fz(z)
m̄(s)

exp(ωU(x, s))
∑

s′ exp(ωU(x, s′))
fθ(εθ)dεθ, x = (z, θ̄(z)εθ, θ̄(z)εθ, ...),

ȳ(z, s) = y(x, s),

where ȳ(z, s) in the last line is well defined since y is uniquely determined by (z, s). χ(ȳ(z, s), s) is the average

net rental income at earnings ȳ(z, s) in city type s, divided by average effective rental income per household.
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fy(ȳ(z, s), s) is model-implied earnings density at ȳ(z, s) of city type s. χd(ȳ(z, s), s) and fd
y (ȳ(z, s), s) are the

corresponding data counterparts. Note we only construct average χd that is unconditional of city type s from

the data, so we treat χd identical across city types.

Model densities of earnings follow from the equations below. The first equation goes from cdfs Fz(z, s), Fy(y, s)

for skill and income in city type s to densities. This assumes y(z, s) is monotone and differentiable in z, which

holds by Claim A1 2(i) and 0 ≤ τ < 1. The second follows from the expression for component density m(x, s).

Fz(z, s) = Fy(ȳ(z, s), s)⇒ fz(z, s) = F ′
z(z, s) = F ′

y(ȳ(z, s), s)ȳ′(z, s) = fy(ȳ(z, s), s)ȳ′(z, s)

fz(z, s) =

∫
m(x, s)fθ(εθ)dεθ∫ ∫
m(x, s)fθ(εθ)dεθdz

=
∫

fz(z)
m̄(s)

exp(ωU(x, s))
∑

s′ exp(ωU(x, s′))
fθ(εθ)dεθ.

A.3.3 Algorithm for Solving the Optimal Marginal Tax Rate

Algorithm 1 Solve the Nonlinear Optimal Marginal Tax Rate
1: Construct a grid for earnings, denoted by Y = {y1, ∙ ∙ ∙ , yn}.

2: Initialize a constant T ′(y) over Y . Set converged to false.

3: while not converged do

4: Given T ′(y), solve the competitive equilibrium, which can be reduced to a system of equations for

housing prices ps and transfer Tr. Denote the population densities as m(x, s).

5: for each y∗ ∈ Y do

6: Evaluate the A, B, C terms of the tax formula at y∗: (1) use a finite-difference procedure to eval-

uate T ′′(y) and y′(z, s); (2) use trapezoidal numerical integration combined with m(x, s) to calculate the

expectation terms; (3) use
∑

s ε(z∗s , s)m̂(z∗s , s) y∗

y′(z∗
s ,s) = y∗fy(y∗)

∑
s

fy(y∗,s)
fy(y∗) ε(z∗s , s) = y∗fy(y∗)ε̄(y∗), where

y∗ = y(z∗s , s) .

7: Perturb the tax function with the elementary tax reform: T̃ (y)← T (y) + ατ (y; y∗), T̃ ′(y)← T ′(y),

where τ(y; y∗) = 1(y≥y∗). Solve the new equilibrium. Denote the housing prices under the new equilibrium

as p̃s, and population densities as m̃(z, s).

8: Calculate δτps = (p̃s − ps)/α and δτm = (m̃−m)/α. Calculate the D term of the tax formula.

9: end for

10: Calculate T̂ ′(y) by solving T̂ ′(y)/(1− T̂ ′(y)) = A(y)B(y)C(y) + D(y) for each y ∈ Y .

11: Set converged to true if ||T̂ ′ − T ′|| < Tol, where Tol is some predetermined convergence tolerance and

|| ∙ || is the sup norm.

12: Update T ′(y)← λT̂ ′(y) + (1− λ)T ′(y) with some dampening parameter λ ∈ (0, 1).

13: end while

Step 7 in the algorithm involves solving for the new equilibrium under the perturbed tax system. This involves

solving for the new labor decision. Figure A.6 plots the effects on labor supply and earnings by skill level for the

S = 1 example described in Section 4.3. As shown, after the perturbation, a group of individuals whose initial

earnings are slightly above the threshold income y∗ choose to reduce their labor supply until their earnings fall

to just below y∗, whereas the labor supply remains unchanged for individuals whose initial earnings are below

y∗ or well above y∗.

The perturbation of the tax function introduces a discontinuous increase of the tax payment at pre-tax income

y∗; the individual would thus not choose to earn slightly above y∗ since doing so would actually lead to a lower
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Figure A.6: The Effects of an Elementary Tax Reform

after-tax income. The individual would thus optimally reduce his labor supply until the earnings fall to slightly

below y∗. For individuals with initial earnings well above y∗, they still find an earnings level above y∗ preferable,

and their labor supply is thus unchanged because there is no income effect on labor supply. For the same reason,

the labor supply of individuals with initial earnings below y∗ also remains unchanged.

In solving numerically for the labor supply decisions under the perturbed tax system, we adopt a partitioned

bracketing method. For an individual with skill level z conditioning on living in city type s, we partition the

choice set of labor supply into [l, l∗s(z)) and [l∗s(z), l], where l∗s(z) = y∗

zAs
is the level of labor that generates

the threshold income level y∗ in city type s. We search within each of the two partitions using a bracketing

method, and compare the utility generated by the optimal labor supply choice in each partition to get the

globally optimal solution. As a validation, we also approximate the labor supply decision after the perturbation

with the sequence of twice differentiable tax reforms that are described in the proof of Theorem 2. The labor

supply choices can still be characterized by a first order condition under the twice differentiable tax reform, but

a similar partitioned method needs to be used to accommodate the non-concavity of the optimization problem.

The approximation generates an almost identical labor supply profile as the one calculated directly based on

the step function.

A.3.4 Validation

Estimating housing rent elasticities We obtain state-level time series of income tax rates from Moretti and

Wilson (2017). Their time series end at 2011. The data source for housing rents is the Fair Market Rent series

(FMR) constructed by the Department of Housing and Urban Development (HUD). The FMR is determined

by HUD on an annual basis using data from the census, AHS, and CPI samples (when possible), in addition to

local random samples. It is based on the cost of a vacant 2-bedroom rental unit at the 40th or 45th percentile of

the metropolitan area’s (MSA) distribution, and can be viewed as the price for a rental unit of average quality. 41

The time series we use starts from 1985 after which FMR are constructed continuously.

41It is reported for the 45th percentile before 1995 and the 40th percentile afterward. Such a design change
is taken into account by controlling time fixed effects in the specification below.
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We estimate variants of the following specification:

Δ ln(pmt) = γΔln(1− τs(m),t−1) + FEm + F̂Et + εmt,

where m denotes the MSA; t denotes the time; s(m) denotes the state of MSA m; Δ is the first difference

operator. pmt is the rental rate of MSA m at time t; τs,t−1 is the average income tax rate of an individual at the

50th income percentile of state s at t− 1.42 FEm and F̂Et are the fixed effects for MSA and time, respectively;

εmt are the error terms. We choose to lag the change in net-of-tax rates by one period to give it time to take

effect; further dynamic effects are reported below.

The model is specified in first differences since the rental rate series are not stationary. We consider speci-

fications with and without the metropolitan fixed effects to account for the possibility of different time trends

across MSAs.

Table A.5: Elasticity of Rental Rates in Net-of-tax Rates

(1) (2)
Δ ln(p) Δ ln(p)

Δ ln(1− ATR p50) 0.8242∗∗ 0.8724∗

(0.3986) (0.5006)
Observations 115400 115400
Fixed Effects t m, t
R2 0.236 0.248

Notes: two-way clustered standard errors by states and years in parenthesis.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A.5 reports the estimated elasticities. Since the tax variation is at the state level, the standard errors

are clustered by states and years. The first column controls for the time fixed effects whereas the second column

controls for both MSA and time fixed effects. Estimated coefficients are similar, suggesting that heterogeneous

time trends in housing price series are not a concern. The estimated coefficient in Column (1) is the one reported

in Table 4.

For the dynamic effects, we estimate the same specification for longer time differences in log rental rates, and

construct the impulse response functions of rental rates to changes in net-of-tax rates in the spirit of the local

projection method (Jordà, 2005):

ln(pm,t+f )− ln(pm,t−1) = γfΔln(1− τs(m),t−1) + FEf
m + F̂E

f

t + εf
mt, (A.2)

for horizon f = 1, 2, ... independently. γf is thus the f -period cumulative elasticity of rental rates in net-of-tax

rates. As shown in Figure A.7, the cumulative elasticity starts from around 0.85, climbs to the peak of around

3.5 after 5 years, and persists to be positive after 10 years. Estimates with or without the MSA fixed effects

are similar.

Constructing model elasticities Starting from the calibrated equilibrium, we perturb the equilibrium by

42We use the average tax rate for the median income earners, among other tax rates (at 95th, 99th or 99.9th
income percentile) assembled by Moretti and Wilson (2017), since the FMR series used here likely corresponds
to housing demand for these individuals.
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Notes: Plotted are the cumulative elasticities of housing rental rates in net-of-tax rates at different horizons,
estimated off the panel local projection specification (A.2). Shaded areas are two standard deviation intervals.

Figure A.7: Dynamic Responses of Rental Rates to Changes in Net-of-Tax Rates

raising the marginal tax rates at all income levels by 1% for a city type s.43 The rental price elasticities is

calculated as

elasp,s =
log(pnew

s )− log(p∗s)

log(1−ATR50,new
s )− log(1−ATR50,∗

s )
.

To accord with the empirical estimates, the model elasticities are with respect to the net-of-average tax rates

at the 50th income percentile. We calculate the average of these elasticities elasp,s across experiments for each

city type s. These average elasticities are the ones reported in Table 4 in the main text.

A.4 Generalized Extreme Value Distributions

Theorem [McFadden (1978, p. 73)]: Assume (v1, ..., vn) ∈ Rn and Fη(x1, ..., xn) = exp(−G(exp(−x1), ..., exp(−xn))),

where G : Rn
+ → R+, G(λx) = λG(x), ∀λ > 0, G(y) → ∞ if yi → ∞ for each i, and for k distinct components

i1, ..., ik, ∂kG/∂yi1 ...yik
is nonnegative if k is odd and nonpositive if k is even. Then

1. Pr(i) ≡ Pr(vi + ηi > maxj 6=i vj + ηj) = exp(vi)Gi(exp(v1),...,exp(vn))
G(exp(v1),...,exp(vn)) , where (η1, ..., ηn) ∼ Fη.

2. E[maxj vj + ηj ] = log G(exp(v1), ..., exp(vn)) + γE, where γE is Euler’s constant.

Example: G(x1, ..., xn) = [
∑

i bix
ω
i ]1/ω for ω ≥ 1 and b1, ..., bn > 0 satisfies the conditions of the Theorem.

Applying the Theorem using the generating function G produces:

43The additional tax revenue collected is redistributed back via a lump-sum transfer.
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Pr(i) =
bi exp(ωvi)∑
j bj exp(ωvj)

E[max
j

vj + ηj ] = log([
∑

i

bi exp(ωvi)]
1/ω) + γE =

1
ω

log[
∑

i

bi exp(ωvi)] + γE

Issue: Is there a gain in flexibility to scaling the preference shocks with parameter λ > 0?

Pr(i) ≡ Pr(vi + ληi > max
j 6=i

vj + ληj) = Pr(vi/λ + ηi > max
j 6=i

vj/λ + ηj) =
bi exp(ωvi/λ)

∑
j bj exp(ωvj/λ)

=
bi exp(ω̂vi)∑
j bj exp(ω̂vj)

Answer: No for λ ∈ (0, 1). By defining ω̂ = ω/λ, scaling down does not offer flexibility that cannot be

obtained by alternative ω. The example works for ω ≥ 1 so scaling down by 0 < λ < 1 is equivalent to no

scaling but ω̂ = ω/λ > ω ≥ 1.

A.5 Proof of Theorem 1-3

Theorem 1: Assume U is twice differentiable, Fη is a GEV distribution and S ≥ 1. Assume an interior allocation

(c(x, s), l(x, s), h(x, s)) solves Problem P1 with τ∗ ∈ (0, 1) and (c(x, s; τ), l(x, s; τ), h(x, s; τ)) ∈ Ω(G, τ ) are

locally differentiable around τ∗ and (c(x, s; τ∗), l(x, s; τ∗), h(x, s; τ∗)) = (c(x, s), l(x, s), h(x, s)). If T (y, τ ) = τy,

then τ∗ = (1− g − gH)/(1− g + ε).

Proof:

Step 1: Set L(τ) =
∑

x∈X F (x)
∫

(maxs U(c(x, s; τ), l(x, s; τ), h(x, s; τ); s) + ηs)dFη. The representation for

L(τ) below follows by the Theorem in McFadden (1978), see Appendix A.3, where γE is Euler’s constant.

L(τ) =






∑
x∈X F (x)[U(c(x, 1; τ), l(x, 1; τ), h(x, 1; τ); 1) + η̄1] if S = 1

∑
x∈X F (x)[ 1

ω log(
∑

s exp(ωU(c(x, s; τ), l(x, s; τ), h(x, s; τ); s))) + γE ] if S ≥ 2

Step 2: By the hypothesis of the Theorem and Step 1, L′(τ∗) = 0. Restate this condition using the fact that
d
dτ U = U1[−T2 + Tr′ − h d

dτ ps +
∑

r
d
dτ prθrNrHr]. This holds as U(c, l, h; s) = U(y − T (y, τ ) + Tr − psh +

∑
r prθrNrHr, y/zAs, h; s), where y(x, s; τ) = zAsl(x, s; τ), and as interior optimal decisions imply U1zAs(1 −

T1) + U2 = 0 and U1ps − U3 = 0.

0 = L′(τ∗) =






∑
x∈X

d
dτ U(c(x, 1; τ∗), l(x, 1; τ∗), h(x, 1; τ∗); 1))F (x) if S = 1

∑
x∈X( 1

ω

∑
s exp(ωU(x,s))(ω d

dτ U(c(x,s;τ∗),l(x,s;τ∗),h(x,s;τ∗);s))∑
s′ exp(ωU(x,s′)) )F (x) if S ≥ 2

Reorganize this necessary condition using the mass M(x, s; τ∗) = exp(ωU(x,s;τ∗))∑
s′ exp(ωU(x,s′;τ∗))F (x). We will often

supress the arguments of functions when notationally convenient.

0 = L′(τ∗) =
∑

(x,s)
d
dτ U(c(x, s; τ∗), l(x, s; τ∗), h(x, s; τ∗); s)M(x, s; τ∗) for S ≥ 1

0 = L′(τ∗) =
∑

(x,s) U1[−T2 + Tr′ − h d
dτ ps +

∑
r

d
dτ prθrNrHr]M

Step 3: Use T (y, τ ) = τy and restate the result of Step 2 using the fact that Tr′(τ∗) =
∑

(x,s) yM +

τ∗ d
dτ

∑
(x,s) yM . The second equation divides all terms in the first equation by E[y]E[U1], where E[y] =
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∑
(x,s) yM and E[U1] =

∑
(x,s) U1M . The next two equations reorganize this result using the elasticities (ε, εp

s)

and the definitions of (g, gH) and NetRentr. The conclusion then follows.

∑
(x,s) U1[−y +

∑
(x,s) yM + τ∗ d

dτ

∑
(x,s) yM − h d

dτ ps +
∑

r
d
dτ prθrNrHr]M = 0

−
∑

(x,s)
y

E[y]
U1

E[U1]
M + 1 + τ∗

d
dτ

∑
(x,s) yM

E[y] −
∑

(x,s)
U1
∑

r( d
dτ pr(h1{r=s}−θrNrHr)M

E[y]E[U1]
= 0

−
∑

(x,s)
y

E[y]
U1

E[U1]
M + 1− τ∗

1−τ∗
dE[y]
d1−τ ( 1−τ∗

E[y] )− 1
1−τ∗

∑
(x,s)(

U1
E[U1]

)
∑

r εp
r

NetRentr

E[y] M = 0

−g + 1− τ∗

1−τ∗ ε− 1
1−τ∗ gH = 0⇒ τ∗ = (1− g − gH)/(1− g + ε) ‖

Consider a family of twice differentiable functions τy∗,ν(y) := 1
2 + 1

π arctan( y−y∗

ν ) ∈ T . Lemma A1 establishes

some limit properties of integrals involving τy∗,ν(y) and τ ′
y∗,ν(y). The proof of Theorem 2 uses this family of

functions to approximate various operations involving the step function τy∗(y) = 1{y≥y∗}.

Lemma A1: For any h ∈ C0(R) (the set of continuous functions with compact support)

(i) lim
ν→0

∫

R
τy∗,ν(y)h(y)dy =

∫

R
τy∗(y)h(y)dy and (ii) lim

ν→0

∫

R
τ ′
y∗,ν(y)h(y)dy = h(y∗)

Proof:

(i) Since h ∈ C0(R), there exists a R > 0 such that h(y) = 0 for any |y| ≥ R. Then for any θ > 0,

|
∫
R τy∗,ν(y)h(y)dy −

∫
R τy∗(y)h(y)dy| ≤

∫
R|τy∗,ν(y)− τy∗(y)||h(y)|dy

=
∫
|y−y∗|≥θ

|τy∗,ν(y)− τy∗(y)||h(y)|dy +
∫
|y−y∗|<θ

|τy∗,ν(y)− τy∗(y)||h(y)|dy

≤ sup|y−y∗|≥θ|τy∗,ν(y)− τy∗(y)|
∫
|y−y∗|≥θ

|h(y)|dy + 2
∫
|y−y∗|<θ

|h(y)|dy

≤ sup|y−y∗|≥θ|
1
2 −

1
π arctan θ

ν |
∫
R |h(y)|dy + 2

∫
|y−y∗|<θ

|h(y)|dy

→ 0 + 2
∫
|y−y∗|<θ

|h(y)|dy, as ν → 0.

The equality in the second line above follows by partitioning the domain of integration into disjoint sets. The

inequality in the third line is a straight forward upper bound. The fourth line follows by substitution. The

fifth line follows as limν→0
1
π arctan θ

ν = 1/2. Then let θ → 0 and conclude that limν→0

∫
R τy∗,ν(y)h(y)dy =

∫
R τy∗(y)h(y)dy.

(ii) The leftmost equality on the first line below uses the fact that
∫
R τ ′

y∗,ν(y)dy = 1. The rightmost

equality uses h(y) = 0 for |y| ≥ R,
∫∞

R
τ ′
y∗,ν(y)dy = 1

2 −
1
π arctan R−y∗

ν = oν(1) and
∫ −R

−∞ τ ′
y∗,ν(y)dy =

− 1
2 + 1

π arctan −R−y∗

ν = oν(1). The inequality on the second line uses τ ′
y∗,ν(y) ≥ 0. The equality uses the

change of variable ỹ = (y − y∗)/ν. The equality in the third line uses
∫
R

1
π(1+ỹ2)dỹ = 1.

|
∫
R τ ′

y∗,ν(y)h(y)dy − h(y∗)| = |
∫
R τ ′

y∗,ν(y)(h(y)− h(y∗))dy| = |
∫ R

−R
τ ′
y∗,ν(y)(h(y)− h(y∗))dy|+ oν(1)

≤
∫ R

−R
τ ′
y∗,ν(y)|h(y)− h(y∗)|dy + oν(1) =

∫ R/ν

−R/ν
1

π(1+ỹ2) |h(νỹ + y∗)− h(y∗)|dỹ + oν(1)

≤
∫
R

1
π(1+ỹ2)oν(1)dỹ + oν(1) = oν(1), where oν(1)→ 0 as ν → 0. ‖

Theorem 2: Assume U(c, l, h; s) = u(c − v(l)) + w(h) + as is twice differentiable, Fη is a GEV distribution

and S ≥ 1. Assume an interior allocation (c(x, s; T ), l(x, s; T ), h(x, s; T )) solves Problem P2 and all functions

are Gateaux differentiable in the direction τ ∈ T at an optimal tax system T ∈ T . Then:
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(i) E[ T ′(y)
1−T ′(y)ετ

′(y)y] =
E[U1[−τ(y)+E[τ(y)]+

∑
(x,s) T (y)δτ M+δτ NetRent]]

E[U1]
for all τ ∈ T

(ii) Assume that the distribution F has an associated density f , y(x, s; T ) is strictly increasing and differen-

tiable in z and that the limits in the D(y∗) term exist. For y∗ > 0:
T ′(y∗)

1−T ′(y∗) = A(y∗)B(y∗)C(y∗) + D(y∗), where A(y∗) = 1
ε̄(y∗) , B(y∗) = 1− E[U1|y≥y∗]

E[U1]
,

C(y∗) = 1−Fy(y∗)
y∗fy(y∗) and D(y∗) = limν→0

E[U1]
∑

s

∫
T (y)δτy∗,ν

mdx+E[U1δτy∗,ν
NetRent]

y∗fy(y∗)ε̄(y∗)E[U1]

Proof: part (i)

Step 1: [Gateaux derivative δτW (T ) of the objective W (T )]

W (T ) =






∑
x∈X [U(c, l, h; 1) + η̄1]F (x) if S = 1

∑
x∈X F (x)

∫
(maxs U(c(x, s; T ), l(x, s; T ), h(x, s; T ); s) + ηs)dFη if S ≥ 2

As described in Appendix A.3, apply McFadden (1978) to restate W (T ) as indicated below. The Gateaux

derivative δτW (T ) of W in the direction τ in the second equation below follows from the chain rule. The

third equation writes this derivative as a single equation using the mass M(x, s; T ) = exp(ωU(x,s;T ))∑
s′ exp(ωU(x,s′;T ))F (x)

for (x, s) ∈ X ×S. The fourth equation simplifies the derivative using (1) δτ c = δτy− δτT (y) + δτTr− hδτps−

psδτh+
∑

r θrδτprNrHr, (2) δτT (y) = τ+T ′(y)δτy and (3) the interior optima conditions U1zAs(1−T ′)+U2 = 0

and U1ps − U3 = 0.

W (T ) =






∑
x∈X [U(c, l, h; 1) + ε̄1]F (x) if S = 1

∑
x∈X [ 1

ω log(
∑

s exp(ωU(c(x, s; T ), l(x, s; T ), h(x, s; T ); s))) + γE ]F (x) if S ≥ 2

δτW (T ) =






∑
x∈X [U1δτ c + U2δτ l + U3δτh]F (x) if S = 1

∑
x∈X [

∑
s

exp(ωU(x,s;T ))[U1δτ c+U2δτ l+U3δτ h]∑
s′ exp(ωU(x,s′;T )) ]F (x) if S ≥ 2

δτW (T ) =
∑

(x,s)∈X×S(U1δτ c + U2δτ l + U3δτh)M for S ≥ 1

δτW (T ) =
∑

(x,s)∈X×S U1[−τ + δτTr − hδτps +
∑

r θrδτprNrHr]M for S ≥ 1

δτW (T ) =
∑

(x,s)∈X×S U1[−τ + δτTr + δτNetRent]M for S ≥ 1

Step 2: [Calculate δτTr(T ) and welfare δτW (T ) = 0 at the optimum]

Recall that Tr(T ) =
∑

(x,s) T (zAsl(x, s; T ))M(x, s; T ) − G and that M(x, s; T ) is endogenous when S ≥ 2

even though this dependence is hidden when convenient. Let l̃ = l(x, s; T +ατ ) denote the optimal labor choice

under the perturbed tax system. The third equation evaluates δτW (T ) = 0, where y = zAsl.

δτTr(T ) = limα→0

∑
(x,s)

(T (zAs l̃)+ατ(zAs l̃))M(x,s;T+ατ)−T (zAsl)M(x,s;T )
α

δτTr(T ) =
∑

(x,s) τ(zAsl)M +
∑

(x,s) T ′(zAsl)zAsδτ lM +
∑

(x,s) T (zAsl)δτM

δτW (T ) =
∑

(x,s) U1[−τ(y) +
∑

(x,s) τ(y)M +
∑

(x,s) T ′(y)zAsδτ lM +
∑

(x,s) T (y)δτM

+δτNetRent]M = 0

Step 3: [Restate δτW (T ) = 0 by replacing δτ l(x, s; T ) with elasticities]

As stated in the main text, ε(x, s; T ) is the labor elasticity along the nonlinear tax function. Straightforward

calculation shows that ε(x, s; T ) = εL(x,s;T )
1+εL(x,s;T )ρ(y(x,s;T ))

, where εL(x, s; T ) = v′(l(x,s;T ))
v′′(l(x,s;T ))

1
l(x,s;T ) is the labor
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elasticity along the linearized budget constraint and ρ(y) = T ′′(y)
1−T ′(y)y. The Gateaux derivative of labor in models

with exogenous wages (i.e. wage = zAs) can be expressed using this labor elasticity as follows: δτ l(x, s; T ) =

−ε(x, s; T ) τ ′(y(x,s;T ))
1−T ′(y(x,s;T )) l(x, s; T ).

The first equation below restates δτW (T ) = 0 using elasticities and y(x, s; T ) = zAsl(x, s; T ) to represent

labor income. The second equation states the result using compact notation.

∑
(x,s)

T ′(y)
1−T ′(y)ετ

′(y)yM =
∑

(x,s) U1[−τ(y)+
∑

(x,s) τ(y)M+
∑

(x,s) T (y)δτ M+δτ NetRent]M
∑

(x,s) U1M

E[ T ′(y)
1−T ′(y)ετ

′(y)y] =
E[U1[−τ(y)+E[τ(y)]+

∑
(x,s) T (y)δτ M+δτ NetRent]]

E[U1]

part (ii)

We would like to use a tax perturbation function τy∗(y) = 1{y≥y∗} to isolate the marginal tax rate T ′(y∗)

at a specific income level y∗ when applied to the necessary condition in Theorem 2(i). This does not work as

τy∗(y) /∈ T . Therefore, we use a sequence of functions τy∗,ν(y) := 1
2 + 1

π arctan( y−y∗

ν ) ∈ T that achieves this

result as ν goes to 0. Sachs, Tsyvinski and Werquin (2020) use a related construction in the proof of their

Proposition 2.

The first equation below is the necessary condition from Theorem 2(i) but restated using the productivity

density f(x) rather than the discrete distribution F (x). As notation, E[g] ≡
∑

s

∫
g(x, s)m(x, s)dx, where

m(x, s) = exp(ωU(x,s))∑
s′ exp(ωU(x,s′))f(x), and m̂(z, s) =

∫
Θ

m(z, θ, s)dθ. The second equation evaluates this necessary

condition using τy∗,ν(y). The third equation takes limits of the second equation as ν goes to zero. Equation (∗)

restates the third equation in a useful way.

E[ T ′(y)
1−T ′(y)ετ

′(y)y] = E[U1[−τ(y)+E[τ(y)]+
∑

s

∫
T (y)δτ mdx+δτ NetRent]]

E[U1]

E[ T ′(y)
1−T ′(y)ετ

′
y∗,ν(y)y] =

E[U1(−τy∗,ν(y)+E[τy∗,ν(y)]+
∑

s

∫
T (y)δτy∗,ν

mdx+δτy∗,ν
NetRent]

E[U1]

T ′(y∗)
1−T ′(y∗)

∑
s ε(z∗s , s)m̂(z∗s , s) y∗

ŷ′(z∗
s ,s) = −E[U1|y≥y∗](1−Fy(y∗))+E[U1](1−Fy(y∗))

E[U1]

+ limν→0
E[U1(

∑
s

∫
T (y)δτy∗,ν

mdx+δτy∗,ν
NetRent]

E[U1]

(∗) T ′(y∗)
1−T ′(y∗)

∑
s ε(z∗s , s)m̂(z∗s , s) y∗

ŷ′(z∗
s ,s) = (1− E[U1|y≥y∗]

E[U1]
)(1− Fy(y∗))

+ limν→0
E[U1]

∑
s

∫
T (y)δτy∗,ν

mdx+E[U1δτy∗,ν
NetRent]

E[U1]

The left-hand side of the third equation follows by a change of variable in integration and then by applying

Lemma A1(ii). The result uses the notation ŷ(z, s) = y(z, θ, s), ∀θ, which holds due to the absense of income

effects on labor supply. The variable z∗s is the unique solution to ŷ(z∗s , s) = y∗, given a value y∗. The first

term on the right-hand side of the third equation above follows by changing the variable of integration to apply

Lemma A1(i) and then reorganizing the result. Fy and Fz denote the cdfs of labor income and skill.

limν→0 E[U1τy∗,ν ] = E[U1τy∗ ] = E[U1|y ≥ y∗](1− Fy(y∗))

For S = 1, use equation (∗) and the fact that Fz(z) = Fy(ŷ(z, 1)) and fz(z) = m̂(z, 1) implies fy(y∗) =

fz(z∗1)/ŷ′(z∗1 , 1) = m̂(z∗1 , 1)/ŷ′(z∗1 , 1) to express the result in terms of the density of the income distribution. For

S ≥ 1, use equation (∗) and (i) fy(y∗, s) = m̂(z∗s , s)/ŷ′(z∗s , s) for the income density component arising from

city type s, (ii) fy(y∗) =
∑

s fy(y∗, s) so that the density is the sum of the separate density components and

(iii)
∑

s ε(z∗s , s)m̂(z∗s , s) y∗

ŷ′(z∗
s ,s) = y∗fy(y∗)

∑
s

fy(y∗,s)
fy(y∗) ε(z∗s , s) = y∗fy(y∗)ε̄(y∗) to express the result.
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T ′(y∗)
1−T ′(y∗) = 1

ε(z∗
1 ,1) (1−

E[U1|y≥y∗]
E[U1]

) (1−Fy(y∗))
y∗fy(y∗) + limν→0

E[U1δτy∗,ν
NetRent]

ε(z∗
1 ,1)y∗fy(y∗)E[U1]

when S = 1

T ′(y∗)
1−T ′(y∗) = 1

ε̄(y∗) (1−
E[U1|y≥y∗]

E[U1]
)( 1−Fy(y∗)

y∗fy(y∗) )+limν→0
E[U1]

∑
s

∫
T (y)δτy∗,ν

mdx+E[U1δτy∗,ν
NetRent]

y∗fy(y∗)ε̄(y∗)E[U1]
when S ≥ 1

‖

In Theorem 3, the earnings function is y = w(z, s,Ms)l = zAsΓ(Ms)l, where Γ(Ms) is the agglomeration

effect and Ms is the population of a city of type s. Define Ms =
∑

z M(z, s)/Ns or as Ms =
∫

m(z, s)dz/Ns

when the productivity distribution F has a density, where m(z, s) = exp(ωU(z,s))∑
s′ exp(ωU(z,s′))f(z) is the equilibrium

density component coming from city type s. Lemma A2 , used in the proof of Theorem 3, indicates that a tax

reform τ impacts labor directly through the change in the marginal tax rate and indirectly through the impact

on the local wage. The terms εl,w = ε(1 − ρ(y)) and εw,Ms = w3Ms

w are the labor elasticity to the local wage

and the wage elasticity to the local population, where ρ(y) = T ′′(y)y/(1− T ′(y)).

Lemma A2: In the model with agglomeration δτ l(x, T ) = −ε τ ′

1−T ′ l(x, T ) + εl,wεw,Ms

δτ Ms(T )
Ms

l(x, T ).

Proof: The first line below states the first-order conditions under a wage w = w(z, s,Ms) = zAsΓ(Ms) and

tax function T and under a wage w̃ = w(z, s, M̃s) and tax function T + ατ . In this notation, (w̃, l̃, M̃s) denote

values of variables under the perturbed tax system T + ατ . Denote Δl = l̃ − l and Δw = w̃ − w. The second

line differences the two first-order condtions. The third line applies a Taylor approximation of v′ and T ′ around

the unpertubed allocation and drops terms that go to zero faster than Δl or Δw.

v′(l) = (1− T ′(wl))w and v′(l̃) = (1− T ′(w̃l̃)− ατ ′(w̃l̃))w̃

v′(l̃)− v′(l) = Δw(1− T ′(wl))− w̃(T ′(w̃l̃)− T (wl))− ατ ′(w̃l̃)w̃

v′′(l)Δl = Δw(1− T ′(wl)− T ′′(wl)y)− w2T ′′(wl)Δl − ατ ′(w̃l̃)w̃

The first equation below reorganizes terms. The second takes limits and then states the main result.

Δl = − ατ ′(w̃l̃)w̃
v′′+w2T ′′ + (1−T ′(wl)−T ′′(wl)y)

v′′+w2T ′′ Δw

δτ l = limα→0
Δl
α = − τ ′(wl)w

v′′+w2T ′′ + (1−T ′(wl)−T ′′(wl)y)
v′′+w2T ′′ δτw = −ε τ ′(wl)

1−T ′(wl) l + εl,wεw,Ms

δτ Ms

Ms
l

To see that the main result above holds, apply the definitions of the elasticities (ε, εl,w, εw,Ms) and use

δτw = wεw,Ms

δτ Ms

Ms
.

τ ′(wl)w
v′′+w2T ′′ =

v′

1−T ′ τ ′(wl)

v′′+w v′

1−T ′ T ′′
=

v′

v′′l

1+ v′

v′′l
T ′′

1−T ′ y

τ ′

1−T ′ l = ε τ ′(wl)
1−T ′(wl) l

(1−T ′(wl)−T ′′(wl)y)
v′′+w2T ′′ δτw =

v′

1−T ′ (1−T ′(wl)−T ′′(wl)y)

v′′+w2T ′′
δτ w
w =

v′

v′′l
(1− T ′′

1−T ′ y)

1+ v′

v′′l
T ′′

1−T ′ y

δτ w
w l = εl,wεw,Ms

δτ Ms

Ms
l ‖

Theorem 3: Maintain the assumptions of Theorem 2 but allow production to have an agglomeration effect,

where Γ(Ms) is differentiable. Assume an interior allocation (c(x, T ), l(x, T ), h(x, T )) solves Problem P2 and

all functions are Gateaux differentiable in the direction τ ∈ T at an optimal tax system T ∈ T . Then:

(i) E[ T ′(y)
1−T ′(y)ετ

′(y)y] =
E[U1[−τ(y)+E[τ(y)]+

∑
(x,s) T (y)δτ M+δτ NetRent+(1−T ′)yεw,Ms

δτ Ms
Ms

]]

E[U1]

+
E[U1]E[T ′(y)y(1+εl,w)εw,Ms

δτ Ms
Ms

]

E[U1]
for all τ ∈ T
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(ii) Assume that the skill distribution F has an associated density f , y(z, s, T ) is strictly increasing and

differentiable in z and that the limit in the D term exists. For y∗ > 0:
T ′(y∗)

1−T ′(y∗) = A(y∗)B(y∗)C(y∗)+D(y∗), where A(y∗) = 1
ε̄(y∗) , B(y∗) = (1− E[U1|y≥y∗]

E[U1]
), C(y∗) = ( 1−Fy(y∗)

y∗fy(y∗) ),

D(y∗) = limν→0
E[U1]

∑
s

∫
T (y)δτy∗,ν

mdx+E[U1δτy∗,ν
NetRent]

y∗fy(y∗)ε̄(y∗)E[U1]
+

limν→0
E[U1]E[T ′(y)yεw,Ms (1+εl,w)

δτy∗,ν
Ms

Ms
]+E[U1(1−T ′)yεw,Ms

δτy∗,ν
Ms

Ms
]

y∗fy(y∗)ε̄(y∗)E[U1]

Proof: part (i)

Step 1: [Gateaux derivative δτW (T ) of the objective W (T )]

The first equation below follows from the argument in Step 1 of Theorem 2. The second equation follows by

δτ c = (1− T ′)δτy− τ + δτTr− hδτps − psδτh +
∑

r θrδτprNrHr and the agent’s first order conditions. We also

use δτy = zAsΓ(Ms)δτ l + zAsΓ′(Ms)lδτMs. Recall that city size is Ms = (
∫

m(x, s)dx)/Ns.

δτW (T ) =
∑

(x,s)(U1δτ c + U2δτ l + U3δτh)M for S ≥ 1

δτW (T ) =
∑

(x,s) U1[−τ + δτTr +
∑

r δτprθrNrHr − δτpsh + (1− T ′)zAsΓ′(Ms)lδτMs]M for S ≥ 1

Step 2: [Calculate δτTr(T ) and welfare δτW (T ) = 0 at the optimum]

The derivative for transfers follows from Step 2 of Theorem 2.

δτTr(T ) =
∑

(x,s)

τ(y)M +
∑

(x,s)

T ′(y)(zAsΓ
′lδτMs + zAsΓδτ l)M +

∑

(x,s)

T (y)δτM

Evaluate δτW (T ) = 0, where a wage elasticity εw,Ms , defined and used in Lemma A2, is employed.

δτW (T ) = E[U1[−τ(y) + E[τ(y)] + E[T ′(y)zAsΓδτ l] +
∑

(x,s) T (y)δτM +
∑

r δτprθrNrHr − δτpsh

+E[T ′(y)zAsΓ′lδτMs] + (1− T ′)zAsΓ′(Ms)lδτMs]] = 0

δτW (T ) = E[U1[−τ(y) + E[τ(y)] + E[T ′(y)zAsΓδτ l] +
∑

(x,s) T (y)δτM + δτNetRent

+E[T ′(y)yεw,Ms

δτ Ms

Ms
] + (1− T ′)yεw,Ms

δτ Ms

Ms
]] = 0

Step 3: [Restate δτW (T ) = 0 by replacing δτ l(x, T ) with elasticities]

Restate δτW (T ) = 0 using Lemma A2, which states δτ l(x, T ) = −ε τ ′

1−T ′ l(x, T ) + εl,wεw,Ms

δτ Ms(T )
Ms

l(x, T ).

E[ T ′(y)
1−T ′(y)ετ

′(y)y] =
E[U1[−τ(y)+E[τ(y)]+

∑
(x,s) T (y)δτ M+δτ NetRent+E[T ′(y)yεw,Ms

δτ Ms
Ms

]+(1−T ′)yεw,Ms
δτ Ms

Ms
]]

E[U1]

+
E[U1]E[T ′(y)εl,wεw,Ms

δτ Ms
Ms

y]

E[U1]

part (ii)

Repeat the line of argument used in Theorem 2 (ii) to get the first line below. The only element not present

in Theorem 2 is the last term governing agglomeration forces. As notation E[a] =
∑

s

∫
a(x, s)m(x, s)dx.

T ′(y∗)
1−T ′(y∗)

∑
s ε(z∗s , s)m̂(z∗s , s) y∗

ŷ′(z∗
s ,s) = (1− E[U1|y≥y∗]

E[U1]
)(1− Fy(y∗))+

limν→0
E[U1]

∑
s

∫
T (y)δτy∗,ν

mdx+E[U1δτ NetRent]

E[U1]
+

limν→0
E[U1]E[T ′(y)y(1+εl,w)εw,Ms

δτy∗,ν
Ms

Ms
]+E[U1(1−T ′)yεw,Ms

δτy∗,ν
Ms

Ms
]

E[U1]
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The case S = 1 allows some simplification because tax revenue does not change due to relocation of types x

across cities and all agglomeration terms are absent because there is no relocation across cities (i.e. δτMs = 0).

Thus, the result is the same as in Theorem 2(ii).

T ′(y∗)
1− T ′(y∗)

=
1

ε(z∗1 , 1)
(1−

E[U1|y ≥ y∗]
E[U1]

)
(1− Fy(y∗))

y∗fy(y∗)
+ lim

ν→0

E[U1δτy∗,ν
NetRent]

ε(z∗1 , 1)y∗fy(y∗)E[U1]
when S = 1

For S ≥ 1, use (i) fy(y∗, s) = m̂(z∗s , s)/ŷ′(z∗s , s) for the income density component arising from city s, (ii)

fy(y∗) =
∑

s fy(y∗, s) so that the density is the sum of the separate density components and (iii)
∑

s ε(z∗s , s)m̂(z∗s , s) y∗

ŷ′(z∗
s ,s) =

y∗fy(y∗)
∑

s
fy(y∗,s)
fy(y∗) ε(z∗s , s) = y∗fy(y∗)ε̄(y∗) to express the result, following the argument in Theorem 2.

T ′(y∗)
1−T ′(y∗) = 1

ε̄(y∗) (1−
E[U1|y≥y∗]

E[U1]
)( 1−Fy(y∗)

y∗fy(y∗) ) + limν→0
E[U1]

∑
s

∫
T (y)δτy∗,ν

mdx+E[U1δτy∗,ν
NetRent]

y∗fy(y∗)ε̄(y∗)E[U1]
+

limν→0
E[U1]E[T ′(y)yεw,Ms (1+εl,w)

δτy∗,ν
Ms

Ms
]+E[U1(1−T ′)yεw,Ms

δτy∗,ν
Ms

Ms
]

y∗fy(y∗)ε̄(y∗)E[U1]
when S ≥ 1 ‖

Comment: It is straightforward to extend Theorem 3 to handle the case of agglomeration and endogenous

housing. Endogenous housing is model as indicated in section 5.3.1. The resulting formula is given below, where

only the D term changes. The change occurs as now ownership shares θr are in land and land receives a rental

price pland
r in city type r.

T ′(y∗)
1−T ′(y∗) = A(y∗)B(y∗)C(y∗) + D(y∗), where A(y∗) = 1

ε̄(y∗) , B(y∗) = (1− E[U1|y≥y∗]
E[U1]

), C(y∗) = ( 1−Fy(y∗)
y∗fy(y∗) ),

D(y∗) = limν→0
E[U1]

∑
s

∫
T (y)δτy∗,ν

mdx+E[U1(
∑

r δτy∗,ν
pland

r θrNrLr−δτy∗,ν
psh)]

y∗fy(y∗)ε̄(y∗)E[U1]
+

limν→0
E[U1]E[T ′(y)yεw,Ms (1+εl,w)

δτy∗,ν
Ms

Ms
]+E[U1(1−T ′)yεw,Ms

δτy∗,ν
Ms

Ms
]

y∗fy(y∗)ε̄(y∗)E[U1]

A.6 Optimal commodity tax

This subsection shows that our main findings hold when jointly searching for the optimal income tax schedule

and commodity tax rates: the urban forces raise the optimal income tax rates at all income levels. We choose

the model with endogenous housing price as the benchmark, since optimal rental expenditure tax is not finite

in the model with exogenous housing supply as shown by the claim below. The main results are presented after

the proof of the claim.

Claim: Denote L(Th) the aggregate welfare under housing rental expenditure tax Th, holding (T, Tc) constant.

Then in the model with S = 1 and exogenous housing supply

dL(Th)
dTh

> 0,

if cov(U1(x, 1), θ1 − 1) < 0, where U1(x, 1) is the marginal utility of consumption at the equilibrium associated

with (T, Tc, Th).

Proof.

From optimal housing expenditure

h(x, 1)p1(1 + Th) = α[y(x, 1)− T (y(x, 1))− v(l(x, 1)) + Tr + θ1p1N1H1]
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and consumption expenditure

c(x, 1) = (1− α)[y(x, 1)− T (y(x, 1))− v(l(x, 1)) + Tr + θ1p1N1H1]

Aggregating across agents we have

∑

x

F (x)h(x, 1)p1(1 + Th) =
∑

x

α[y(x, 1)− T (y(x, 1))− v(l(x, 1))]F (x) + αTr + αp1N1H1

∑

x

F (x)c(x, 1) =
∑

x

(1− α)[y(x, 1)− T (y(x, 1))− v(l(x, 1))]F (x) + (1− α)Tr + (1− α)p1N1H1

and recall equilibrium transfer

Tr =
∑

x

F (x)T (y(x, 1)) + Th

∑

x

F (x)h(x, 1)p1 + Tc

∑

x

F (x)c(x, 1)−G.

Applying the housing market clearing condition
∑

x F (x)h(x, 1) = N1H1, and denoting C ≡
∑

x F (x)c(x, 1),

T̃ r ≡ Tr − Th

∑
x F (x)h(x, 1)p1, Ỹ ≡

∑
x[y(x, 1) − T (y(x, 1)) − v(l(x, 1))]F (x), the above three equations can

be stated as a system of linear equations of (p1(1 + Th), T̃ r, C):

N1H1 ∙ p1(1 + Th)(1− α) = αỸ + αT̃ r

C = (1− α)Ỹ + (1− α)T̃ r + (1− α) ∙N1H1 ∙ p1(1 + Th)

T̃ r =
∑

x

F (x)T (y(x, 1)) + TcC −G.

Since there is no income effect on labor, the coefficients of the equations do not depend on Th or p1, and

therefore, p1(1 + Th) does not depend on Th, and d log p1
d log(1+Th) = −1.

Now apply the envelope condition

dU(x, 1)
d log(1 + Th)

= U1(x, 1)
dTr + dp1θ1N1H1 − h(x, 1)d(p1(1 + Th))

d log(1 + Th)

= U1(x, 1)
N1H1d(p1Th) + dp1θ1N1H1 − h(x, 1)d(p1(1 + Th))

d log(1 + Th)

= U1(x, 1)
N1H1d(p1Th + p1 − p1) + dp1θ1N1H1

d log(1 + Th)

= U1(x, 1)p1

{
N1H1 − θ1N1H1

}
,

where the last line applies that d log p1
d log(1+Th) = −1 derived above.

Therefore,

dL(Th)
d log(1 + Th)

=
∑

x

F (x)U1(x, 1)p1

{
N1H1 − θ1N1H1

}

= −p1N1H1 ∙ cov(U1(x, 1), θ1 − 1) > 0

as long as cov(U1(x, 1), θ1 − 1) < 0 is assumed. Intuitively, an increase in Th increases aggregate welfare by

redistributing housing revenue that is disproportionately owned by high-income earners via lump-sum transfer.

It does not distort housing production as housing supply is inelastic.
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Note: All models are with endogenous housing supply. The US commodity tax rates are (Tc, Th) =
(0.0784, 0.1193). The model with optimal housing tax is computed by setting Tc to the US level and then
jointly searching over Th and the income tax function T . The optimal Th = 1.05.

Figure A.8: Optimal Tax Rates with US and Optimal Commodity Tax

Figure A.8 compares the optimal income tax rate schedule under the optimal housing expenditure tax rate

with the one obtained in the benchmark model. To compute this we fix the consumption expenditure tax rate to

the US level, and search for the housing expenditure tax rate and income tax function so that aggregate welfare

is maximized. For this purpose, the benchmark model is the model with endogenous housing as the optimal

housing expenditure tax is not finite in the model with exogenous housing. The Claim above establishes some

reasons behind this. The optimal housing expenditure tax rate is Th = 1.06 in Figure A.8 and is substantially

higher than the US level.44 The optimal income tax rates are lower under the optimal housing expenditure tax

44The Atkinson and Stiglitz (1976) theorem asserts that, under some conditions, commodity taxes and a non-
linear income tax do not deliver higher welfare levels than can be achieved by an optimal nonlinear income tax
with zero commodity taxes. The Atkinson-Stiglitz theorem is proved using the assumption that commodities
and labor are separable (i.e. U(x1, ..., xn, l) = u(V (x1, ..., xn), l)) in utility and that economic profits are taxed
away. The urban model does not have separable utility and housing profits, in the form of land rents, are not
directly taxed. The findings underlying Figure A.8 imply that as the tax rate Th increases towards the optimal
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for the same reason that is discussed in Section 5.4.3—raising income tax rates now also lowers consumption

and housing tax revenue that could fund the lump-sum transfer. Such a force is reflected by the negative E

terms shown on the right panel of Figure A.8, which is more negative for the optimal Th. However, the D terms

in all models are positive, showing that the urban forces robustly contribute to raising the optimal income tax

rates.

A.7 Partial equilibrium perturbation

Proposition A.1 examines the role of increased lump-sum transfers as a force that determines where agents live.

The economy starts in an equilibrium with an HSV tax function with Tr = 0. The partial equilibrium effect of

increasing the transfer Tr is to drive agents away from living in the productive (s = 1) city, at least for agents

holding a zero position in housing (i.e. θs = 0).

Proposition A.1. Consider an equilibrium in the model of section 5 with S = 2, A1 > A2, T (y) = y−λy1−τ−Tr

and Tr = 0. Then the partial equilibrium response of the equilibrium (log) density component for the high

productivty city is ∂ ln m(x,1;Tr,{ps′})
∂Tr

∣
∣
∣
Tr=0

< 0 for all x consistent with θs = 0, ∀s.

Proof. Step 1: A simple extension of Claim A1 from Appendix A.3, when θs = 0, leads to

U(x, s; Ξ) = log[(1 − α)(1−α)ααp−α
s exp(as)[y(x, s)− T (y(x, s))− v(l(x, s)) + Tr]]

= log[(1− α)(1−α)ααp−α
s exp(as)[η2(zAs)

η1 + Tr]],

where η2 is a constant that depends on (τ, λ, γ) only, η1 = (1−τ)(1+1/γ)
(1/γ+τ) and Ξ = (Tr, {ps′}). This then implies

the result below:

∂U(x, s; Ξ)
∂Tr

=
1

η2(zAs)η1 + Tr

Step 2: Take log of the density component m(x, s; Ξ) = f(x) exp(ωU(x,s;Ξ))∑
s′ exp(ωU(x,s′;Ξ)) and differentiate to get the

result:

∂ ln m(x, s; Ξ)
∂Tr

= ω
[∂U(x, s; Ξ)

∂Tr
−

∑
s′ exp(ωU(x, s′; Ξ)) ∂U(x,s′;Ξ)

∂Tr∑
s′ exp(ωU(x, s′; Ξ))

]

Step 3: Combine Steps 1-2

∂ ln m(x, 1; Tr, {ps′})
∂Tr

∣
∣
∣
Tr=0

= ω
1

η2zη1

[ 1
Aη1

1

−

∑
s′ exp(ωU(x, s′; Ξ)) 1

A
η1
s′∑

s′ exp(ωU(x, s′; Ξ))

]

The bracketed, right-hand-side term is always negative, when A1 > A2, which is the conclusion of the

Proposition.

level, then land rents do decline.
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