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Abstract

The paper explores the consequences for inequality of the joint evolution, endogenous or

exogenous, of social connections and human capital investments. It allows for intergenera-

tional transfers of both human capital and social networking endowments in dynamic and

steady-state settings of a dynastic overlapping-generations model. Intergenerational trans-

fer elasticities exhibit rich dependence on social effects. The dynamics of demographically

increasingly complex models are shown to be tractable. The stochastic steady states of the

human capital distribution are examined in the presence of shocks to underlying parameters

that are interpreted as shocks to cognitive and non-cognitive skills.
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1 Introduction

In a world where individuals interact in myriads of ways, one wonders how the benefits of

one’s connections with others compare with those conferred by individual characteristics

when it comes to acquisition of human capital. It is particularly interesting to be able to

distinguish between connections that are the outcome of deliberate decisions by individuals

and connections being given exogenously and beyond individuals’ control. Such a distinction

matters macroeconomically as well, if individuals stand to benefit from social connections in

ways that affect consumption and investment. Individuals may seek to form social links with

others, as an objective in its own right, in order to enrich their social lives and avoid social

isolation. Social links provide conduits through which benefits from interpersonal exchange

can be realized. Social isolation excludes them. The paper explores the consequences of

the joint evolution of social connections and human capital investments. It thus allows one

to study the full extent in which social connections may influence inequality in consump-

tion, human capital investment and welfare across the members of the economy. It embeds

inequality analysis in models of endogenous social networks formation. The novelty of the

model lies in its joint treatment of human capital investment and social network forma-

tion, while distinguishing between the case of impact on human capital from endogenous as

opposed to exogenous social networking.

The last few years have generated new research on social networks at a torrential rate,

including books, most notably Goyal (2009) and Jackson (2008), and hundreds of papers. So-

cial networks research was booming within econophysics for more than twenty years while be-

ing hardly noticed by economists. Nowadays, social network research is increasingly spread-

ing to virtually all economics fields, including notably experimental economics, too. Yet, as

Jackson (2014), p. 14, points out, studying endogenous network formation continues to be an

important priority. The present paper aims at a deeper understanding of the consequences

of social network formation for inequality. Such an emphasis has an intuitive appeal, that is

whether social networking increases or decrease inequality.

It is straightforward to assess the difficulty of modeling social networking. For a given
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number of individuals I, there are 2
I(I−1)

2 different possible networks connecting them. Thus,

to a typical social group of I = 100 there correspond 250×49 ≈ 101500 network configurations,

some of which are not topologically distinct. As Blume, Brock, Durlauf and Jayaraman

(2015) argue, there is no viable general theoretical model of network formation. Therefore,

to be able to conduct specific analyses that link differences in personal characteristics to dif-

ferences in outcomes after individuals have formed social networks and have been influenced

by those they end up being in social contact with one needs to be specific. It is for this

reason that we start with a fairly tractable model of social network formation, which is due

to Cabrales, Calvó-Armengol and Zenou (2011), which we extend into a dynamic model.2

The Cabrales, Calvó-Armengol, and Zenou framework originally starts from a familiar

linear-quadratic model of individual decision making, about connecting with others in a

multi-person group context, with social links seen as outcomes of individual decisions, which

are associated with a noncooperative Nash equilibrium.3 A connection between any two

individuals is associated with a connection weight, whose magnitude depends on inputs

of effort by the two respective individuals, which can be either exogenous or functions of

inputs decided upon by the respective parties. In a number of alternative simple settings,

the model separates out the contribution of individual characteristics from the aggregate

effects of population groups. Furthermore, because of equilibrium multiplicity that results

entirely from (endogenous) social link formation, rich dynamic effects are possible whose

consequences bear upon long-run income and wealth inequality. The results are obtained in

a framework where links are symmetric (i.e., the underlying graph is undirected but weighted)

and thus the benefits are mutual. The formation of undirected (symmetric) links, as modelled

here, presumes a certain degree of social coordination. That is, individuals recognize that

even though their decisions are made in a non-cooperative context, they nonetheless result

in social group formation. Asymmetric links, as where my being influenced by others (as by

looking up to others) does not presume that those other individuals I am linked to are in

2Albornoz, Cabrales, and Hauk (2014) develop a conceptually similar use of the Cabrales et al. model,

but in a static context.
3This basic model may be augmented to account for a variety of motivations, such as altruism, conformism

and habit formation. See Ioannides (2013), Ch. 2.
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turn influenced by me, provide avenues of social influence but do not connote social relations

as such.

The model is extended by means of a number of dynamic models of human capital in-

vestment and social network formation in order to allow for intergenerational transfers of

wealth and of social connections. First, we interpret the dynamic model as one with the

representative individual being infinitely lived. A variation of that model is to take social

connections as given exogenously and not subject to optimization. This variation allows us

to highlight the importance of endogenous setting of social connections for the cross-sectional

distribution of human capital and explore conditions under which the social connections help

magnify or reduce the impact of the dispersion in cognitive skills. When social connections

are endogenous multiple equilibria become possible. At the steady state solutions associated

with either high or, alternatively low socialization efforts, the distribution of human capi-

tal mirrors that of the cognitive skills. Next, we follow a long tradition in economics that

links life cycle savings, human capital investment and intergenerational transfers. Starting

from Loury (1981), but also Becker and Tomes (1979)4, a number of papers have linked

intergenerational transfers and the cross-section distributions of income and of wealth. In a

recent paper, Lee and Seshadri (2014) model human capital accumulation in the presence

of intergenerational transfers, while allowing for multiple stages of investment over the life

cycle, such as investment during childhood, college decision and on-the-job human capital

accumulation. Theirs is one of very few papers that take Heckman’s forceful suggestion [see

Cunha and Heckman (2007); Heckman and Mosso (2014)] seriously, namely to allow for com-

plementarity between early and later child investments, inter alia, by means of a model of

78-overlapping generations (and thus many more than the commonly used two overlapping

generations) with infinitely lived altruistic dynasties. Their model shows, using numerical

simulation methods, that investment in children and parents’ human capital have a large im-

4See Goldberger (1989) for a skeptical view of some of Becker and Tomes’ specific predictions. Goldberger

also welcomes broadly behavioral predictions obtained by sociologists but not necessarily emanating from

utility maximization. He hints that sociological predictions that strong intergenerational links for socioeco-

nomic status may be understated by economists’ focus on intergenerational effects on income and its impact

on inequality.
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pact on the equilibrium intergenerational elasticities of lifetime earnings, education, poverty

and wealth, while remaining consistent with cross-sectional inequality. They also show that

education subsidies and progressive taxation can significantly reduce the persistence in eco-

nomic status across generations. But they do not model social connections.

There is a long-standing empirical literature on different aspects of intergenerational mo-

bility across different countries. Corak (2013) emphasizes an empirical pattern, known as

the “The Great Gatsby Curve:” higher earnings inequality is associated with lower inter-

generational mobility. Black and Devereux (2011) survey the key developments regarding

the forces driving the correlations between earnings among successive generations. Black,

Devereux and Salvanes (2009) report estimates of the intergenerational transmission of IQ

scores: an increase in father’s IQ at age 18 of 10% is associated with a 3.2% increase in son’s

IQ at the same age. While most empirical research focuses on the persistence of income or

of economic status across two successive generations, recent research has ventured into per-

sistence across up to four successive generations. In particular, Lindahl et al. (2015) obtain

estimates, using Swedish data, of intergenerational transmission of individual measures of

lifetime earnings for three generations and of educational attainment for four generations.

They find that estimates obtained from data on two generations severely underestimate

long-run intergenerational persistence in both labor earnings and educational attainments.

This in turn implies that much lower long-run social mobility in terms of dynastic human

capital, which they attribute to direct influence across generations by more distant family

members than parents. Specifically, the directly estimated coefficients by means of a single

regression of the great-grandparent’s education on that of the grandparent is 0.607, on that

of the parent 0.375 and on that of the child is 0.175. Similarly, the estimated coefficient of

the grandparent’s earnings on that of the parent is 0.356, and on that of the child is 0.184.

These are much larger than those imputed from conventionally estimated correlations of the

respective magnitudes between two successive generations.

Black et al. (2015) seek to separate the impact of genetic from environmental factors as

determinants of the intergenerational transmission of net wealth by means of administrative

data for a large sample of Swedish adoptees merged with similar information for their bi-
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ological and adoptive parents. Comparing the relationship between the wealth of adopted

and biological parents and that of the adopted child, they find that, even prior to any in-

heritance, there is a substantial role for environment and a much smaller role for genetics.

In examining the role of bequests, they find that, when they are taken into account, the

role of adoptive parental wealth becomes much stronger. Their findings suggest that wealth

transmission is not primarily because children from wealthier families are inherently more

talented or more able but that, even in relatively egalitarian Sweden, “wealth begets wealth.”

Specifically, the effect on the child rank in within-cohort wealth distribution of the rank of

biological parent wealth has an estimated coefficient of 0.162 and that of the adoptive parent

wealth of 0.222, while those for inheritance are 0.124 and 0.231, respectively, all very highly

significant statistically. These findings are also corroborated by Englund et al. (2013), who

use administrative data from Sweden that follow a panel of parents matched to their grown

children. They find that childrens initial endowments of net worth and their subsequent net

worth accumulations are positively correlated with parents’ net worth, and that children of

wealthy parents have higher earnings, even conditional on intergenerational correlation in

earnings. They argue that the intergenerational correlation in net worth comes largely from

housing wealth, which they explain in terms of correlations in home ownership among high

net worth parents and their children, as well as a number of other factors.

Clark (2014) has also contributed to revival of interest in the persistence of status over

long periods of time and the reasons for it. Using surnames to track generations, Clark

shows that true rates of social mobility are much slower than conventionally estimated.

Furthermore, they are not any higher now than in the pre-industrial era, and they vary

surprisingly little across societies. Social mobility rates are as slow in egalitarian Sweden

as they are in inegalitarian Chile. Clark’s findings pose awkward questions about whether

social policy can do much to increase the rate of regression to the mean of “elites and

underclasses.” Grönquist et al. (2014) report that the intergenerational correlation between

fathers and sons, obtained from Swedish records of military enlistment for 37 cohorts range

in 0.42–0.48 for cognitive, and around 0.42 for non-cognitive abilities. Their results show

that mother-son correlations in cognitive abilities are somewhat stronger than father-son
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correlations, while no such difference is apparent for non-cognitive abilities. Furthermore,

to the intergenerational transmission from fathers to sons of cognitive skills, non-cognitive

skills also contribute in a statistically significant way, but with a numerically much smaller

coefficient, 0.445 vs. 0.069; and correspondingly, of non-cognitive skills, cognitive skills also

contribute in a statistically significant way, but with a numerically much smaller coefficient,

0.043 vs. 0.391.

The present paper relies on these estimates as a source of motivation to study the role

of both cognitive skills, which are enhanced with education and training, along with non-

cognitive skills, which are more closely related to social networking. Thus, the dynamics of

human capital accumulation may be jointly studied with the evolution of social connections.

It presents a sequence of models, with parents making decisions about how much wealth

to transfers to the children and about social connections along with investment in human

capital. Parents recognize that due to the timing of implementing their social networking

decisions their children stand to benefit from them, as they themselves have benefited from

the decisions of their own parents. By moving to a model with two overlapping generations,

we can determine how the pattern of dynamics reflects the demographic structure of the

economy. Furthermore, as the number of overlapping generations increases, the matrix char-

acterizing the dynamic evolution of the state variable has a multiplicative factorial structure:

each additional overlapping generation included contributes a factor to the product. Finally,

the paper examines a variation of the two overlapping generations model with two subpe-

riods which makes it possible for individuals to invest in augmenting the cognitive skills of

their children. The impact of availability of such investments on the dynamics of evolution

of human capital investments and social connections is considerably more complicated, but

a factorial structure is still evident.

The remainder of this document is organized as follows. Section 2 introduces the basic

model in a static setting. This model allows us to explore the empirical implications of

endogeneity of social connections by allowing for different assumptions about the effects of

interactions. While the value of interactions and their consequences for income inequality

have been explored before, notably by Benabou (1996) and Durlauf (1996; 2006), those
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earlier analyses do not allow specifically for social network formation. Next we use the

model to explore the case when each individual’s interactions with her social contacts are

of the CES-type, as an example of many alternative specifications. Section 2.2.1 introduces

shocks to one of individuals’ behavioral parameters that I interpret as shocks to cognitive

skills. Section 3 presents an infinite-horizon model of an evolving economy consisting of many

agents who build connections among each other. Section 4 assesses some consequences for

cross-sectional inequality. Section 5 interprets the model in an infinite-horizon dynastic life

cycle context, and section 5.1 extends the model first to an overlapping generations context,

ultimately with two-overlapping generations. Subsection 5.1.2 examines, in particular, the

effects of social networking on intertemporal wealth transfer elasticities, and subsection 5.3

introduces shocks to another of individuals’ behavioral parameters that I interpret as shocks

to non-cognitive skills. The solution allows us to discuss the properties of models with

more than two overlapping generations. These extensions allow for parents’ circumstances

to influences their children’s wealth endowments via transfers, social networking, as well as

possibly persistent cognitive skills.

2 Endogenous Social Structure: The Cabrales, Calvó-

Armengol and Zenou Model

In commonly employed formulations of models of individuals’ actions subject to social inter-

actions and in the definition of the group choice problem each individual is typically assumed

to be affected by group averages of contextual effects and of decisions [Ioannides 2013, Ch.

2]. It is easy to contemplate that individuals may deliberately seek social interactions that

are not necessarily uniform across their social contacts and to examine their determinants.

In the absence of a “viable general theoretical model of network formation” [Blume, Brock,

Durlauf and Jayaraman (2015), p. 474] I adopt the Cabrales, Calvó-Armengol and Zenou

(2011) as a parsimonious starting point. Immediately below, I briefly develop their key re-

sults, with individuals’ engaging in networking efforts (socialization, in their terminology)

that determine the probabilities of contacting others simultaneously while deciding on their

8



own actions. Further below, I interpret individuals’ actions as human capital investments.

Individual i chooses action ki and socialization effort si, taking as given actions and

socialization efforts by all other individuals, i, j ∈ I, so as to maximize:

Ui,τ(i)(s,k) ≡ bτ(i)ki + a
I∑

j=1,j ̸=i
gij(s)kikj − c

1

2
k2i −

1

2
s2i , (1)

where τ(i) denotes the individual type5 individual i belongs to. I will simplify this no-

tation for clarity, when it is not necessary, by using i instead of τ(i). The terms s =

(s1, . . . , si, . . . , sI) denote the full vector of networking efforts, and k = (k1, . . . , ki, . . . , kI),

those of actions. The weights of social interaction gij, the elements of a social interactions

matrix G, may be defined in terms of socialization efforts in a number of alternative ways.

In the simplest possible case, let the weights, which are obtained axiomatically by Cabrales

et al., be defined as:

gij(s) =
1∑I
j=1 sj

sisj, if ∀si ̸= 0; gij(s) = 0, otherwise. (2)

The coefficient of the interactive term in definition (1) is a key parameter in the determination

of s, the vector of connection intensities. Individual i chooses (si, ki) so as to maximize (1).

I follow Cabrales et al. (2011) and define, for later use, an auxiliary variable

ã(b) = a

∑
τ∈T b

2
τ∑

τ∈T bτ
, (3)

where T denotes the set of agent types, with generic element τ, as distinct from the set of

individuals, I, I = |I|, and the functions x̄(x), x2(x) are defined as follows:

x̄(x) ≡
∑
τ∈T xτ
|T |

, x2(x) ≡
∑
τ∈T x

2
τ

|T |
. (4)

The normalized sums in this definition reflect relative frequencies of individual types.

5Cabrales et al. follow standard practice in this literature and define a finite number of types of players

and work with an m−replica game, for which the total number of individuals is a large multiple of the

number of types. In this fashion, as we see further below, it is possible to increase the number of individuals

in order to reduce the influence of any single one of them and be able to characterize outcomes in a large

economy. Ibid., p. 341.
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The first-order conditions are, with respect to ki, si, as follows:

bτ(i) + a
I∑

j=1,j ̸=i
gij(s)kj − cki = 0; (5)

a
I∑

j=1,j ̸=i
kikj

∂gij(s)

∂si
− si = 0. (6)

With gij(s) given by (2),

∂gij(s)

∂si
=

1∑I
j=1 sj

sj −
1

(
∑I
j=1 sj)

2
sisj.

Following Ballester et al. (2006) and Cabrales et al. (2011), it is convenient to rewrite the

first-order conditions, respectively, as follows:[
I− a

c
G(s)

]
· ck+ a diag (G(s)) · k = b. (7)

As they note, the matrix [I− a
c
G(s)] is invertible and has a particularly simple form, using

which (7) becomes:

ck+ a[I+ λa/c(s)G(s)] · diag (G(s)) · k = [I+ λa/c(s)G(s)] · b, (8)

where λa/c ≡ a
c

x̄(s)

x̄(s)−a
c
x2(s)

.

Rewriting (6), the first-order conditions for the si’s, yields:

si = aki
s · k
Ix̄(s)

− asiki
s · k

(Ix(s))2
− a

siki
Ix̄(s)

+ a
(siki)

2

Ix(s)2
, (9)

where s · k =
∑I
i=1 sjkj, while abusing notation and identify summing over types with

summing over individuals.

2.0.1 Solving with a Large Number of Agents

As I → ∞, the last three terms on the RHS of (9) vanish. Such simplifications via limiting

results as I → ∞, which Cabrales et al. (2011) make use of repeatedly, recur throughout

the present paper and will not be derived de novo each time they are invoked. Thus, (9)

becomes:

si = aki
s · k
Ix̄(s)

. (10)
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Similarly, since gii(s) =
s2i∑I

j=1
sj
, diag (G(s)) vanishes at the limit, as I becomes large. Thus

(8) becomes:

ck = [I+ λa/c(s)G(s)] · b. (11)

2.1 The Cabrales, Calvó-Armengol and Zenou Benchmark Case

Having demonstrated in some detail the approach pioneered by Cabrales et al. (2011), I next

summarize their key result by means of the following proposition. For a proof, See Appendix

A, Proofs.

Proposition 1. When the number of agent types I is large:

Part a. The multi-person game admits the solution si = 0, ki =
1
c
bi, which will be referred

to as autarkic, and optimal actions and socialization efforts are given by:

ki = ϑbi, si = ϖϑbi, (12)

where ϖ,ϑ Satisfy the system of algebraic equations:

ϖ = ãϑ; (13)

ϑ =
1

c−ϖ2
. (14)

Part b. The system of equations (13–14) admits two sets of positive solutions, provided that:

2
(
c

3

) 3
2

≥ ã. (15)

If agents do not value connections, a = 0, they do not exert socialization efforts, and

from (3) and (13), ϖ = 0. The autarkic solution follows: ki,aut =
1
c
bτ(i). If agents do exert

socialization efforts, that is they are connected, ϖ > 0, and ϑ∗ > 1
c
, and the ki’s exceed their

autarkic values. It is for this reason that Cabrales et al. refer to the equilibrium values of ϑ

as the social (synergistic) multiplier. Exerting socialization efforts and acquiring social links

provide incentives that lead to increased human capitals and improved individual welfare.

11



The feasibility condition for a non-autarkic solution, which Cabrales et al. obtain,6 readily

follows from the closed form solution of the cubic equation. For at least one solution to

exist, from (15), the magnitude of ã, the social interactions coefficient adjusted by the excess

dispersion of the individual cognitive skills, must not exceed a function of the marginal cost

of action coefficient. If the above condition is satisfied with inequality, then two solutions

exist, leading to a high and a low equilibrium, in the terminology of Cabrales et al., both of

which are stable and Pareto-rankable. The socially efficient outcome lies between those two

equilibria. Restrictions on parameter a on account of feasibility recur throughout the paper.

Numerous alternative formulations for the interaction structure are possible. A number

of alternative formulations are examined in an unpublished earlier version of Cabrales et al.

(2011), where the terms gij(s) are specified as gij(s;b). Notably, such an analysis demon-

strates the significance of homogeneity of degree less than or equal to one in connection

weights. If that degree exceeds one, then because of too many synergies, as I grows, the

social structure becomes infeasible.7

2.1.1 Eliminating Equilibrium Multiplicity

As indicated above, Cabrales et al. prove that both high and low equilibria are stable and

Pareto-rankable. Equilibrium mutliplicity may be attractive in certain settings, because it

is known that outcomes may differ across communities that otherwise exhibit quite similar

fundamentals.8 Yet, it might be awkward in a macro context. One way to remove the

awkwardness is to embed the model in a macro framework. We can introduce an output

sector that produces a good using only labor as a input under constant returns. Individuals

supply their labor in the form of efficiency units, with aggregate supply being given by

6In (ϖ,ϑ)− space, the tangent from the origin to the graph of (14) must have slope less than ã−1.
7Formulations of determinants of interactions with rich demographics may be helpful in accommodating

the range of empirical issues broached by Ioannides and Loury (2004).
8See the discussion in Cabrales et al., p. 351. As they argue, this can help to explain why, “in different

locales, children whose parents have similar characteristics (e.g. income, education level) or are similarly

talented as other children (say, measured by I.Q.) end up having very different educational outcomes or

different levels of parental educational efforts.”
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∑
i bihi, and are remunerated by means of a constant wage rate, ω. At equilibrium, profits

are zero. The fact that the high equilibrium is Pareto superior to the low equilibrium, allows

us to devise a subsidy and tax scheme (ξ(si), S(si)) so as to induce each individual to supply

socialization effort and invest in human capital consistent with the high equilibrium. Let the

wage subsidy be a function of si, ξ(si), so that gross wage income would be (1+ ξ(si))ωbihi.

Optimizing with respect to si leads individual i to exert greater effort and correspondingly

invest more in human capital. An associated lump-sum tax can leave each individual at

a desirable level of net income. The parameters of the subsidy and tax scheme may be

chosen so as the subsidy and tax scheme be revenue neutral, while inducing individuals to

choose human capital and socialization effort associated with the high level equilibrium.

This argument applies equally well to the dynamic settings where equilibrium multiplicity

emerges when social networking is endogenous, which we investigate further below, and will

not be repeated.

2.2 CES Interactions Structure

Social interaction weights may be generalized so as to involve the ki’s and thus express

complementarity effects. Here we explore a CES interactions structure of homogeneity of

degree one, but it is also possible to allow for individual characteristics to influence weights

in a great variety of ways, for homogeneity of degree other than in interactions weights.

For example, the terms gij(s;b)kikj, express synergy weights between agents i and j. The

marginal utility of human capital ki depends positively on those of other agents via a convex

structure. We generalize this assumption by means of a CES structure,9 which may be either

convex or concave in the inputs. It is well known that in the limit, such a structure allows for

an individual to benefit from the maximum or the minimum, respectively, among all other

individuals he interacts with [Benabou (1996); Polya et al. (1952), p. 15, Theorem 4].

9The so-called CES structure is in turn a special case of a mean value with an arbitrary function [Hardy

et al. (1952), p. 65]. That is, let y(k) be a function, which is assumed to be continuous and strictly

monotonic, in which case so is its inverse, y−1(k). The CES structure defined here is simply y−1 (
∑
gy(k)) ,

for y(k) = k1−
1
ξ .
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That is, if the interaction term in (2) may be assumed to be instead of the form:

kisi

∑
j ̸=i

sj∑
i si

k
1− 1

ξ

j


ξ
ξ−1

, (16)

then it admits as a special case the original assumption (2), as well as a number of commonly

used assumptions as additional special cases. That is, special cases of (16) are notable:

1. ξ → ∞ : ki si
sj∑
i
si
kj;

2. ξ → 1 : kisi
∏
j ̸=i k

(
sj∑
i
si

)
j ;

3. 1
ξ
→ ∞ : minj {kj} : one bad apple spoils the bunch.

4. 1
ξ
→ −∞ : maxj {kj} : the best individual is the role model.

Case 1 above coincides with the original specification in Section 1 above. Case 2 is the

classic Cobb-Douglas function as special case of the CES structure; case 3 is the Leontieff

case; case 4 is the extreme case of a convex interaction structure.10 Next I examine first the

deterministic case of special cases 3 and 4 above and then the uncertainty counterparts with

stochastic cognitive shocks. For a proof, see appendix A, Proofs.

Proposition 2. For the CES interactions assumption (16), under 1
ξ
→ ∞ – “One Bad Apple

Spoils the Bunch” – we have that

kj = bj
1

c− (abmin)2
, sj = bj

abmin

c− (abmin)2
. (17)

10In fact, a feature such as the last one is relied upon by Lucas and Moll (2014), where individuals divide

their time between producing goods using their existing knowledge and interacting with others in search of

new productivity-enhancing ideas. Such interactions take the form of pairwise meetings, which is simply

an opportunity for each individual to observe the productivity of someone else. If that is higher than his

own, he adopts it in place of the one he came in with. To ensure that the growth generated by the process

is sustained, Lucas and Moll assume that the stock of good ideas to be discovered is inexhaustible. It is

possible to introduce this set of possibilities once we have allowed for shocks that in effect renew the set of

productive ideas.
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Therefore, human capitals and socialization efforts are still proportional to the respective

cognitive skills, but the social multiplier reflects the impact of the “one bad apple.” It exhibits

extreme aversion to the prospect of benefiting from interaction. For a proof, see Appendix

A, Proofs.

Proposition 3. For the CES interactions assumption (16), under 1
ξ
→ −∞ – “The Best

Individual is the Role Model” – we have that

kj = bj
1

c− (abmax)2
, sj = bj

abmax

c− (abmax)2
. (18)

Human capital investments and socialization efforts are still proportional to the respective

cognitive skill, and the social multiplier is now larger than in the previous example of “one

bad apple spoils the bunch.” Not unlike Lucas and Moll (2014), the social effect is associated

with learning from the “best individual” contacted as the role model. It exhibits extreme

optimism to the prospect of benefiting from interactions.

If individuals do not know the cognitive skills of others, but do know their own when

they have to make decisions, one could think of the socialization efforts as defining a social

portfolio. With this in mind, I develop further the model under the assumption of uncertainty

with respect to individuals’ cognitive skills for the special cases of “one bad apple spoils the

bunch” and of “best individual is the role model” metaphors. The analysis is simplified under

the assumption that cognitive shocks are Fréchet-distributed. One could redefine the CES

interaction structure so as to highlight social connections instead of human capitals, or even

both types of effects, but such an extension is not pursued further here. Many alternative

specifications are possible,

2.2.1 Cognitive Shocks

Individual i observes the realization of bi = ψi and then sets (ki, si), which as a consequence

do depend on ψi. Individuals do not observe the realizations of others’ cognitive shocks,

and are thus subject to uncertainty about the impact of cognitive shocks of others on their

decisions. I examine in further detail the case of “The Best Individual is the Role Model”
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under the assumption that the cognitive shocks are independent and identically Fréchet-

distributed random variables.11 The results are summarized by the following proposition.

Proposition 4. If individuals set (ki, si) after they have observed their own cognitive shock,

bi = ψi, and the ψi’s are independent and identically Fréchet-distributed random variables

with a cumulative distribution function given by exp
[
−
(
ψ−m
σ

)−χ]
, where (m,σ, χ) are pos-

itive parameters, denoting the minimum, scale, and shape parameters, respectively, then

ki = νψi and si = aνψi
[
m+ I

1
I νσΓ

(
1− 1

χ

)]
, where ν is a root of the cubic equation:

ν =
1

c− a2
[
m+ I

1
I σΓ

(
1− 1

χ

)]2
ν2
. (19)

Depending upon parameter values, this equation may have either one or two feasible solu-

tions, or none.

Feasibility is conceptual similar to condition (15), with ã now defined as:

ã ≡ a

[
m+ I

1
χσΓ

(
1− 1

χ

)]
. (20)

The optimal values of the ki’s are again proportional to their respective bi = ψi’s and so are

the si’s.

The case of “One Bad Apple Spoils the Bunch” may also be handled by similar techniques

that also rely on extreme order statistics but is not pursued further here.12 “The Best

Individual is the Role Model” solution is conceptually similar to the benchmark case above

(2.1), with an important difference. That is, whereas ã in the benchmark case (3) adjusts

a on account of the relative dispersion of the bi’s, definition (20) combines the mean of the

cognitive shock as a well as its scale parameter, adjusted by a term that accounts for the

thickness of the upper tail. The thicker the upper tail of the distribution of the cognitive

shocks the smaller is χ, and the smaller is Γ
(
1− 1

χ

)
, the less the scale parameter contributes

11The case of cognitive shocks that are independent and conditionally identically Fréchet-distributed ran-

dom variables is discussed in Appendix A.
12In a nutshell, one may work with the properties of minimum of a set of random variables mini{ψi}i∈I via

−maxi{−ψi}i∈I . Such a treatment may rely on the properties of the reverse-Weibull class of distributions

whose distribution function, given by exp[−(−ψ)χ], for x < 0, and equal to 1, for x ≥ 0, has positive support

only over the negative half axis of the real line. See De Haan and Ferreira (2006).
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to ã, and the smaller the social multiplier associated with (19). An increase in m, the mean,

alternatively in σ, the scale (dispersion) parameter, or a larger χ, a thicker upper tail,

increases ã, narrows the spread between the two feasible roots by increasing the smaller

and reducing the larger of the two. This in turn decreases the larger social multiplier and

increases the smaller social multiplier.

3 Dynamics

A conventional dynamic analysis of such a model follows from defining an intertemporal

objective function for agents, and allowing for the first-order conditions to yield equations

exhibiting dynamic adjustment. Let us rewrite the definition of the utility per period13 (1)

as:

Ui,t(st−1; sit;kt−1, kit) ≡ bτ(i)kit + a
I∑

j=1,j ̸=i
gij(st−1)kitkjt−1 − c

1

2
k2it −

1

2
s2it, (21)

According to definition (21), it is networking efforts, that is interaction weights at time

t− 1, st−1, that affect spillovers at time t resulting from actions at time t− 1. Accordingly,

in deciding on her networking efforts and thus interaction weights, agent i anticipates the

impact on her utility in the next period. Specifically, agent i seeks to maximize

∞∑
t=0

ρtUi,τ(i),t(st−1; sit;kt−1, kit),

by choosing sequences of human capital investment and networking efforts {kit}∞0 , {sit}∞0 ,

taking as given all other agents’ contemporaneous decisions {k−it}∞0 , {s−it}∞0 , where ρ, 0 <

ρ < 1, denotes the discount rate. This optimization problem may be easily modified to allow

for depreciation of human capital and of links. The development of the dynamic models that

13See Ioannides and Soetevent (2007) who assume preferences that accommodate more general social effects

than those allowed for here. For example, when a conformist global effect is present, modeled by individuals’

suffering disutility from the gap between own human capital and the lagged average human capital in the

economy, and coexists with local effects, expressed in terms of comparison of an individual’s outcome with

those of his social contacts, the model involves expectations of individuals’ future actions. The resulting

system of second-order difference equations with expectations may be characterized. See ibid., Proposition

4. We leave for future research the consequences of such assumptions for endogenous social structures.
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follow depend critically on timing conventions assumed. After much experimentations, the

assumptions made allow for a tractable development of the dynamics without sacrificing the

potential richness of the interactions between human capital and social networking decisions.

3.1 Joint Evolution of Human Capital and Social Connections

The dynamic analysis is summarized in Proposition 5, which follows next and whose proof

is given in the Appendix, Proofs.

Proposition 5. Agents’ choices of sequences of human capital investment and networking ef-

forts {kit}∞0 , {sit}∞0 , taking as given all other agents’ contemporaneous decisions {k−it}∞0 , {s−it}∞0 ,

0 < ρ < 1, satisfy:

Part A. the system of difference equations

kt =
1

c
b+

a

c
G(st−1)kt−1; (22)

st = aρ[diag kt+1]
∂G(st)

∂st
kt, (23)

where [diag kt+1] denotes an I×I matrix with the elements of kt+1 along the main diagonal,

gij(st) is as defined by (2), and ∂G(st)
∂st

denotes a matrix with the terms ∂gij(sit)

∂st
as its ith row.

Part B. The steady state values of the system (22–23) (k∗i , s
∗
i ) coincide with those of the

static case (10–11), provided that one adjusts for the fact that to a in (11) there corresponds

aρ in (23).

Part C. The deviations ∆sit = sit − s∗i , ∆kit = kit − k∗i , defined as vectors, ∆kt,∆st satisfy

the dynamical system

∆kt+1 =
a

c
G(s∗)∆kt, (24)

∆st =
aã(b)ρϑ

c
G(s∗)∆kt. (25)

The system is locally dynamically stable for both non-zero steady state values of (k∗, s∗),

defined by Proposition 1.

Some remarks are in order. The derivation of the first-order conditions for kit’s ignores,

in the sense of Nash equilibrium, the effect that agent i’s setting of kit has on the spillovers
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to all agents in period t, taking them as given.

I note that the system is locally stable near both non-zero steady states, as in the case

of Cabrales et al. (2011). This result poses issues of equilibrium selection in the underlying

multi-person game, which are not pursued further in this paper. Further below, I show

that the basic dynamic model here also underlies models which allow for individuals to

make intergenerational transfers to their children. I note that stability of the human capital

process implies that of the networking efforts as well provided that ρ < ϖ−1 < 1.

3.2 Evolution of Human Capital with Exogenous Social Connec-

tions

An examination of the evolution of human capital, given social connections, offers interesting

contrast for the case of endogenous connections. Assuming that {st}∞t=1 is exogenous and

given, and taking {k−i,t}∞t=1 , as given, individual i chooses {ki,t}∞t=1 , so as to maximize

lifetime utility according to (21). Under the assumptions of Nash equilibrium, human capitals

satisfy the sequence of difference equations (22), now rewritten in matrix form as:

kt =
1

c
bt +

a

c
G−diag(st−1)kt−1. (26)

To see the properties of this process, let us assume that both st and bt are constant, s,b.

Then, (26) admits a steady state, given by:[
I− a

c
G(s)

]
ck+ adiagG(s)k = b. (27)

As we argued above, for a large number of agents, the diagonal elements vanish, and the

second term on the lhs of (26) is approximately equal to zero.

The special properties of G(s) allow deriving conditions under which
[
I− a

c
G(s)

]−1
ex-

ists. Specifically, since G(s) is symmetric and positive, all of its eigenvalues are real. It has a

maximal simple eigenvalue, r, which is positive, and larger from the absolute values of all its

other eigenvalues. Then, by Theorem III, Debreu and Herstein (1953),
[
I− a

c
G(s)

]−1
exists

is positive, if and only if
1

r
>
a

c
. (28)
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As Cabrales et al. (2011), show, the maximal eigenvalue is given by x2(s)
x(s)

and corresponds

to s as an eigenvector. Furthermore, by Lemma 3, Cabrales et al. (2011), p. 353,

[
I− a

c
G(s)

]−1

= I+
a

c

1

1− a
c
x2(s)
x(s)

G(s).

Thus, condition (28) that the maximal eigenvalue must satisfy suffices for the positivity of

x(s) − a
c
x2(s2), and thus of the second term of the expression for the inverse above. The

steady state value for k∗ becomes:

k∗ =
1

c
b+

a

c

1

1− a
c
x2(s)
x(s)

G(s)
1

c
b. (29)

For the linear dynamical system (26), the unique steady state is stable, provided its maximal

eigenvalue is less than 1, which is equivalent with condition (28).

Human capitals at the steady state, given by (29), consist of two terms of which the

second only reflects the effects of social interactions. Inspection of the second term in the

rhs of (29) suggests that it consists of a vector whose term i is

a

c

si∑
i si

1

c

1

1− a
c
x2(s)
x(s)

s · b. (30)

It follows from (29) and (30), that human capitals consist of two terms: one is the autarkic

value, 1
c
bi; the second, above, involves a term that is common to all that is weighted by

the an individual’s socialization effort, relative to the sum of all efforts. Clearly, when the

social connections are not optimized, the exogenously social connections do matter. Both the

original dispersion of cognitive skills and of the social connections contribute to the dispersion

of human capital across the population. In contrast, it is optimizing over social connections

that renders human capitals and social connections proportional to the b’s. Finally, without

optimization over social networking, Eq. (23) are not part of the first-order conditions, and

no equilibrium multiplicity arises. Given social connections, human capitals are uniquely

defined on the transition to and at the steady state.

Clearly, when the social connections are not optimized, the exogenously social connec-

tions do matter. Both the original dispersion of cognitive skills and of the social connections
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contribute to the dispersion of human capital across the population. Allowing for hetero-

geneity in the parameter a, which we interpret as proxying for social competence (in the

terminology of Clark (2014)) or for non-cognitive skills, or for its stochastic dispersion across

the population, which we explore in section 5.3 further below, adds an additional exogenous

source of dispersion in the evolution of human capitals.

3.2.1 A Stochastic Extension and the Upper Tail of the Distribution of Human

Capitals

By taking the evolution of human capital in relation to social connections as given, that

is by assuming that Eq. (26) holds as an ad hoc rule, we allow for stochastic shocks to

cognitive as well as non-cognitive skills. We recall the specification of cognitive shocks in

section 2.2.1 above and assume that the (column) vectors Ψt = (ψ1,t, . . . , ψI,t) are defined to

represent the full cognitive effect, where ψi,t =
1
c
bi,t, with Ψt being a random vector that is

independently and identically distributed over time. That is, the sequence of {Ψ0, . . . ,Ψt}

is assumed to be a stationary vector stochastic process. In addition, we assume that social

connections are exogenous but random. That is, the social networking efforts are denoted

by Φt = (ϕ1,t, . . . , ϕI,t) , so that instead of (26) we now have:

k̃t = Ψt + G̃(Φt)k̃t−1, t = 1, . . . , (31)

with a given k̃0. For the purpose of analytical convenience and without loss of generality, we

assume that the social interactions matrix G̃t = G̃(Φt) is defined to include the diagonal

terms too. Proposition 6 establishes a limit result fore the upper tail of the distribution of

human capitals. For the details of the proof, see Appendix, Proofs. The result is obtained

by adapting Theorems A and B, Kesten (1973), as discussed in more detail in the Appendix.

Proposition 6. Let the pairs
{
G̃t,Ψt

}
be independently and identically distributed elements

of a stationary stochastic process with positive entries, where G̃t are I × I matrices and Ψt

are I− vectors. Under the additional conditions of Theorems A and B, Kesten (1973; 1974)

and the assumption of the function ||m|| = max|y|=1 |ym|, where y denotes an I row vector,

and m denotes an I × I matrix, as the matrix norm || · || for I × I matrices, and | · | denotes
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the Euclidian norm, then:

Part A. The series

K ≡
∞∑
t=1

G̃(Φ1) · · · G̃(Φt−1)Ψt (32)

converges w. p. 1, and the distribution of the solution k̃t of (31) converges to that of K,

independently of k̃0.

Part B. For all elements x on the unit sphere in IRI , under certain conditions, there exists a

positive constant κ1, and

lim
v→∞

vκ1Prob {xK ≥ v} (33)

exists, is finite and for all elements x on the unit sphere of IRI , and for all the elements on

the positive orthant of the unit sphere is strictly positive.

Proposition 6, Part A merely establishes properties of the limit of the vector of human

capitals. Part B relies on these properties to establish a Pareto (power) law for the upper

tails of the joint distribution of human capitals, characterized by (33). Its significance lies

in that a power law is obtained for a sequence of random vectors, not just a scalar random

variable. Its intuition is straightforward.14 Given a non-trivial initial value for the cognitive

shocks, Ψ(1), and an arbitrary initial value for human capitals, k̃0, the dynamic evolution

of human capital according to (31) keeps positive the realizations of human capital, while

the impact of spillovers is having an overall contracting effect that pushes the realizations

and thus the distributions of human capital, too, towards 0. The distribution is prevented

from collapsing at 0 by the properties of the contemporaneous cognitive shocks, Ψt, and from

drifting to infinity by the contracting effect of the spillovers. The contracting effect results

from the combination of two key requirements: First, a condition, condition (90) in the

Appendix, which requires that there exists a positive constant κ0, for which the expectation

of the minimum row sum of the social interactions matrix raised to the power of κ0, grows

with the number of agents I faster than
√
I, roughly speaking; and second, the geometric

mean of the limit of the sequence of norms of the social interactions matrix is positive but

14This argument is reminiscent of arguments explaining the emergence of power laws elsewhere in the

economics literature. See for the city size distribution case Ioannides (2013), Ch. 8.
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less than 1.15

Thus, the upper tail of the joint distribution of xK, for all elements on the unit sphere of

IRI , is thickened by the combined effect of the contracting spillovers and tends to a power law,

∝ v−κ1 , with an exponent κ1 which is constant. This result is sufficient for the distribution

of human capital in the entire economy to also have a Pareto upper tail. Let fki denote the

limit distribution of ki, i = 1, . . . , I. Then, the economy-wide distribution of human capitals

is given by
∑
i#{i}fki(k), where #{i} denotes the relative proportion of types i agents.

Following Jones (2014), one may approximate the value of the Pareto exponent κ1 in terms

of the parameters of the distribution of G̃,Ψt.

The scalar counterpart of the conditions of Kesten’s theorems have been extensively

invoked in the economics literature. E.g., see Gabaix (1999), 761–762, whose approach can

be the starting point for linking the magnitude of the Pareto exponent approximating the

upper tail to the parameters of the underlying distribution of interest.

4 Some Consequences for Inequality

Sticking to an interpretation of actions as human capital investments, the variation across

individual types, as expressed in the bi’s, can then be seen as a primitive determinant of

the distribution of human capital across a population, that is about “what you know.”

Here, we see that optimized individual human capitals are proportional to the individuals’

cognitive skills, with the factors of proportionality being functions of the distribution of

the bi’s across individuals. This can be demonstrated to hold for many different interaction

structures. Consequently, individuals’ utilities do depend on the distribution of the bi’s across

individuals in more complicated ways. In the simplest formulation, they depend on the first

15The convergence in distribution of

G̃(Φ1) · · · G̃(Φt), t→ ∞,

to a non-zero matrix is of independent interest and may be ensured under appropriate and not very restrictive

conditions. See Kesten and Spitzer (1984).
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and second moments of the distribution of the bi’s across types only. Individualizing the

interactions structure by including functions of the bi’s lead to more complicated moments

of the bi’s. Fully individualizing the interaction weights, or allowing for homogeneity of

degree less than, or greater than, one do not change the basic conclusion, namely that the

outcomes are proportional to bi’s, albeit with different multipliers.

In view of the optimal solution above for either the static or the steady state one in the

dynamic case, we may compute the corresponding optimum value of the individuals’ utility

functions. By using (13) and (14), the value becomes:

Ui,τ(i)(s
∗,k∗) =

1

2
ϑb2τ(i). (34)

In the case of autarky, Ui,τ(i),aut =
1
2
1
c
b2τ(i). Since from (14), if ϑ exists, which is ensured by

the condition that (13)–(14) have at least one solution, then

ϑ >
1

c
.

Thus individuals’ self-organizing into a social network Pareto-dominates autarky, and

the optimum values of the quantity ϑ summarizes the impact of social networking, which

includes the consequences of the human capital decisions that that makes possible, on an

individual’s welfare. This is true for either of the two sets of values of (ϖ,ϑ), the two sets of

roots of (13)–(14), defined by Proposition 1. However, greater dispersion of the bi’s, that is

a larger value of ã, is associated with a smaller spread between the two alternative solutions.

The greater is ã, the greater is the smaller of the two roots, ϑmin, and the smaller the larger

of the two, ϑmax. Holding a constant, this occurs if x
2(b)
x(b)

is greater. The feasibility condition

(15) provides an upward bound on ã. Greater dispersion of the bi’s, as indicated by a larger

value of ã, narrows the advantages, as expressed by the welfare value of outcomes, associated

with the larger social multiplier, relative to the smaller one. Too much dispersion in cognitive

skills renders socially advantageous networking infeasible.

Therefore, an attractive interpretation of this result is that the equilibrium solution for

ϑ, from Proposition 1, Part A, summarizes individuals’ benefits from self-organization into

social networks. Below, I take up the question about how the option to optimize the social
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interactions weights affects outcomes about human capital at the steady state, that is, “how

whom you know” affects intergenerational transfers. In the models examined above, at the

steady state, all outcomes are proportional to the respective b’s, when social connections

are optimized. So, the variation of optimal actions and optimum utility across individuals

separates naturally into the impact of networking opportunities and of cognitive skill, being

proportional, to the bi, respectively b
2
i , with ϑ, the factor of proportionality, reflecting the

effect of the entire distribution of the bi’s via social networking. Thus, in a model where

proxies for cognitive skills are inherited, this feature may be relied on, in a model with a finite

number of overlapping generations, or in infinite-horizon model, to express inheritability. The

question then becomes to what extent “the human wealth you inherit” influences “whom

you know.”

4.1 Unstable Social Structures

When social connections are exogenous, a great number of possibilities arises. The devel-

opment in section 3.2 shows that the stability of the dynamic evolution of human capital

depends on the properties of the social network, relative to the parameters of the utility

function. Thus, when the social network does not satisfy conditions for stability, that is

when
x(s)

x2(s)
<
a

c
, (35)

and depending on initial conditions, one may think of whether it might be possible to have

sets of socially networked individuals whose human capitals converge over time, and while

for others they diverge. Given any given set of social networking efforts, it is straightforward

to obtain conditions under which such groupings of individuals are feasible. Specifically, it

is straightforward to show that given that there is a grouping of h− 1 individuals for whom

xh−1(s)

x2h−1(s)
<
a

c
, (36)

then the lhs of (36) above increases, that is,

xh−1(s)

x2h−1(s)
<

xh(s)

x2h(s)
,
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provided that individual h being added satisfies:

si >
x2h−1(s)

xh−1(s)
.

That is, a prospective new member of the group must have sufficiently high networking

effort in order to improve social networking for the entire group she stands to join. Thus, by

successive addition of such individuals the inequality sign in the infeasibility condition (36)

would be reversed and the condition for stability established. Recall that the spirit of the

model is that there exist many different individuals of each type. Therefore, this ought to

be understood as how different types of individuals with given social networking efforts may

self-organize into different social networks.

Applying these models to dynamic settings, where one may compare between given

weights, perhaps representing a given social structure, and optimized weights, one may thus

distinguish between given relationships, like familial ones, versus social networking across

familial relationships.

5 Overlapping Generations linked through Intergener-

ational Transfers

I consider next dynamic versions of the model that allows for intergenerational transfers. I

consider first transfers of wealth, whereby individuals start their lives with a given level of

wealth in the form of human capital, denoted by ki,t, which they receive from their parents.

They give birth to a child, to whom they transfer wealth equal to ki,t+1. We let the utility

function, given in (1), Ui,t(st,kt), denote the period t payoff for individual i, let dynastic

utility be identified with the value function associated with the dynamic process for each

dynasty be denoted by Ui,t(ki,t). That is, dynastic utility is defined in the standard fashion

for dynamic programming problems:

Ui,t(ki,t) = max
si,t,ki,t+1

: {Ui,t(st,kt) + ρUi,t(ki,t+1)} , (37)
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where utility per period, Ui,t(st,ki,t), is given by (1):

Ui,τ(i)(s,k) ≡ bτ(i)ki,t + a
I∑

j=1,j ̸=i
gij(st)ki,tkj,t − c

1

2
k2i,t −

1

2
s2i,t − ki,t+1.

In this formulation each parent at t decides on a transfer to her child, ki,t+1, and on the

networking effort, si,t, that she avails herself from, given the transfer which she herself

received from her own parent, ki,t, so as to maximize her lifetime utility. Note that whereas

the parent incurs the resource cost, ki,t+1, of the transfer to the child, the child incurs the

adjustment cost, that is the quantity 1
2
k2i,t for the individuals who are the parents at t.

Dynastic utility is defined as the sum of her own period t utility plus the discounted sum of

the maximum utilities of her descendants. It is perfectly feasible to develop this model, but I

note that by making the transfer to the child and her own networking efforts as simultaneous

decisions, the child does not benefit from the parent’s networking. In such a model, there

is no human capital accumulation, since each individual lives for one period, nor growth

(although exogenous growth to the productivity of human capital could be introduced).

This otherwise standard model exhibits the property of the life cycle theory, in its being

isomorphic to a model of a single decision maker who maximizes an infinite sum of utilities

with respect to a sequence of decisions, {ki,t+1, si,t}∞t=0. I do not pursue this model further,

but the details may be found in Appendix A.

5.1 Intergenerational Transfers of Wealth and of Social Connec-

tions

A richer model and analytically more tractable one may be obtained if we assume that in-

dividuals have finite lifetimes and are present in the economy in overlapping generations. I

start with two overlapping generations, but do note however that a minimum of three over-

lapping generations will be necessary to express Heckman’s concern about allowing for at

least two periods of investment in a child’s cognitive and non-cognitive skills. That is, it is

critical [see Cunha and Heckman (2007) and Cunha, Heckman and Schennach (2010)] for the

acquisition of cognitive and non-cognitive skills to interact — there is dynamic complemen-

tarity among them — and investments in certain ages are more critical then in other ages.
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Moreover, these come earlier for cognitive capabilities, later for non-cognitive capabilities,

and vary depending on the particular biological capability. Three-overlapping generations is

the minimum number that allows for direct effects between grandparents and grandchildren.

Heckman and Mosso (2014) emphasize, however, there have to be at least four periods in

individuals’ lifetimes, with two periods for a passive child who makes no economic decisions

but who benefits from parental investment in the form of goods, and two periods as a parent.

This requires, of course, going beyond the standard two-overlapping generations models used

by many life cycle models. See section 5.4 below for steps in this direction.

The fact that parents are assumed to coexist with their children naturally allows me to

model that children may avail themselves of the social connections of their parents. Such

a natural “transfer in kind” can coexist with a wealth transfer. Both types of transfers are

central features of the models that follow.

5.1.1 A Two-Overlapping Generations Model of Intergenerational Transfers

Let subscripts y, o refer to individuals when they are young, old, respectively, and let time

subscripts refer to when the respective quantity is operative. A member of the generation

born at t receives a transfer ky,i,t from her parent when young; she herself takes advan-

tage at time t of social connections chosen by her parent’s generation: sy,t−1. Her cognitive

skills are given: by,i,t, bo,i,t+1. She chooses human capital investment and networking effort

(ko,i,t+1, sy,i,t); she benefits in period t+1 from ko,i,t+1; she and her entire generation benefit

from sy,t in time t+1. She chooses an endowment to her child in the form of human capital,

ky,i,t+1, and networking effort, so,i,t+1, from which her child benefits in the first period of her

own life at time t+ 1. We assume that the resource cost of investment ko,i,t+1 is incurred in

period t, but the adjustment costs is incurred in t+ 1 (when the benefits are also realized);

consistently, the resource cost of ky,i,t+1 is incurred in period t+1, but the parent anticipates

that the adjustment costs are incurred by the child in t+ 1.

In the remainder of this section we generalize the static model introduced above and

obtain a system of dynamic equations. It coincides with that system in the special case of
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cognitive skills which are equal across young and old and invariant over time: bi = by,i,t =

bo,i,t+1.

It is important to clarify the relevant peer groups underlying this formulation. With two

overlapping generations, we may define the peer groups for young generation t at time t as

the members of generation who were born at t − 1 when they are old at time t. That is,

the members of generation t benefit in period t from the human capitals ko,t and the social

networking of their parents’ generation, so,t. When they are old in period t+ 1 they benefit

by the human capitals and social contacts the members of their own generation themselves

decided on, ky,t, sy,t. In other words, in their first-period decisions about social connections,

individuals are conscious of the fact that they themselves would benefit from their own social

connections when they are old; in their second-period decisions about social connections, they

are conscious of the fact that their children would benefit from their own second-period social

connections when their children are young. Therefore, all second-period decisions are in effect

intergenerational transfers of capital and social connections. In the absence of uncertainty, all

decisions are of course made simultaneously, but being explicit about “timing” of networking

efforts would be crucial with sequential resolution of uncertainty, when such uncertainty is

introduced, as in section 5.2 below.

That is, the decision problem for a member of generation t, born at time t, is to choose

{ko,i,t+1, ky,i,t+1; sy,i,t,, so,i,t+1},

given {ky,i,t, so,t}.We obtain first-order conditions for each generation’s decision variables by

first defining the value functions and using the envelope property. The results are summarized

in the proposition that follows; the proof is in the Appendix, Proofs.

Proposition 7.

Part A. The value functions for individual i as of time t and for her child as of time t + 1

are defined respectively as follows, V [t]
i (ky,i,t, so,t),V [t+1]

i (ky,i,t+1, so,t+1), associated with an

individual’s lifetime utility when he is young at t and when he is old at t+ 1, we have:

V [t](ky,i,t, so,t)
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= max
{ko,i,t+1,ky,i,t+1;sy,i,t,,so,i,t+1}

by,i,tky,i,t + a
∑
j ̸=i

gij(so,t)ky,i,tko,j,t −
1

2
ck2y,i,t −

1

2
s2y,i,t − ko,i,t+1

+ρ

bo,i,t+1ko,i,t+1 + a
∑
j ̸=i

gij(sy,t)ko,i,t+1ky,j,t −
1

2
ck2o,i,t+1 −

1

2
s2o,i,t+1 − ky,i,t+1

+ ρV [t+1]
i (ky,i,t+1, so,t+1)

 ;

V [t+1]
i (ky,i,t+1, so,t+1)

= max
{ko,i,t+2,ky,i,t+2;sy,i,t+1,,so,i,t+2}

by,i,t+1ky,i,t+1 + a
∑
j ̸=i

gij(so,t+1)ky,i,t+1ko,j,t+1 −
1

2
ck2y,i,t+1 −

1

2
s2y,i,t+1 − ko,i,t+2

+ρ

bo,i,t+2ko,i,t+2 + a
∑
j ̸=i

gij(sy,t+1)ko,i,t+2ky,j,t+1 −
1

2
ck2o,i,t+2 −

1

2
s2o,i,t+2 − ky,i,t+2

+ ρV [t+2]
i (ky,i,t+2, so,t+2)

 .
Part B. The first-order conditions with respect to (ky,i,t+1, ko,i,t+1) in vector form yield:

ky,t+1 =
a2

c2
G(sy,t)G(so,t+1)ky,t +

1

c
by,t+1 +

a

c2
G(so,t+1)bo,t+1 −

1

cρ

[
I+

a

c
G(so,t+1)

]
1. (38)

ko,t+1 =
a2

c2
G(so,t)G(sy,t)ko,t +

1

c
bo,t+1 +

a

c2
G(sy,t)by,t −

1

cρ

[
I+

a

c
G(sy,t)

]
1. (39)

These are all positive provided that

bo,t+1 −
1

ρ
1 > 0,by,t+1 −

1

ρ
1 > 0.

The first order conditions with respect to (sy,i,t,, so,i,t+1) are:

sy,i,t = ρako,i,t+1

I∑
j=1,j ̸=i

∂gij
∂sy,i,t

(sy,t)ky,j,t; (40)

so,i,t+1 = ρaky,i,t+1

I∑
j=1,j ̸=i

∂gij
∂so,i,t+1

(so,t+1)ko,j,t+1; (41)

Part C. Sufficient conditions for the invertibility of I − a2

c2
G(so)G(sy) and thus for the ex-

istence of meaningful steady state values of (38–39) is that the product of
(
a
c

)2
and of the

largest eigenvalues of each of the positive matrices G(so),G(sy) be less than 1:

(
a

c

)2

· x
2(so)

x(so)
· x

2(sy)

x(sy)
< 1. (42)

The system of linear difference equations (38–39) is uncoupled in (ky,t,ko,t), given (sy,t, so,t, so,t+1).

Their steady state solutions are thus easily characterized, in terms of the inverse of I −
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a2

c2
G(so)G(sy). Since the largest eigenvalue of G(so)G(sy) is bounded upwards by the prod-

uct of the largest eigenvalues of G(so) and G(sy) [Debreu and Herrstein (1953); Merikoski

and Kumar (2006), Thm. 7, 154–155], the inverse exists, provided that the product of a2

c2

with the largest eigenvalues of G(so) and of G(sy) is less than 1. The characterization of the

steady state solution in more detail below allows us to examine these sufficient conditions

further.

In the case of three-overlapping generations, that is when children coexist with their

parents and their grandparents, we will have an additional set of equations for the respective

magnitudes associated with youth, adulthood and old-age,

(ky,i,t, ka,i,t+1, ko,i,t+2; sy,i,t, sa,i,t+1, so,i,t+2).

An individual born at t, will take as given (ky,i,t, sy,i,t) and choose

(ka,i,t+1, ko,i,t+2, ky,i,t+3; sa,i,t+1, so,i,t+2, sy,i,t+3).

Intuitively, one would expect that the additional first-order conditions would introduce addi-

tional multiplicative terms to the matrix defining the dynamical system and additional terms

multiplying the respective cognitive skills vectors. That is, the endowment of cognitive skills

in each period of the life cycle introduce life cycle effects into the model, being weighted by

the respective social interactions matrix, as in 1
c
a
c
G(sy,t)by,t in Eq. (39) above. Given the

pattern of recurrence, we can guess what the counterpart of (39) should look like. Since

the respective endowments are not equal across time, steady state values for human capitals

differ at different stages of the life cycle.

It is known from research on models with more than two overlapping generations [ see

Azariadis et al. (2004) and references there in ] that more than two overlapping generations

models usher in considerably more complicated properties in general equilibrium contexts.16

It is therefore interesting that complicating the demographic structure of the model leaves

16In fact, Samuelson (1958) itself is cast in terms of three-overlapping generations. Azariadis, Bullard and

Ohanian (2004) find additional properties in economies with many overlapping generations, in particular

with respect to monotonicity (or non-monotonicity) of the equilibrium price when consumptions in different

periods are weak gross substitutes.
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tractable the structure that determines the dynamics of the model. Working through the

derivations formally in order to derive the counterpart of (39) confirms, in fact, this intuition.

5.1.2 Social Effects in Intergenerational Wealth Transfer Elasticities

Interpreting human capital ky,i,t as initial wealth for a member of the generation born at t

allows us to compute intergenerational wealth elasticities. This allows for a deeper under-

standing of estimated intergenerational wealth transfer elasticities.

We work from (38) and define the elasticity of ky,i,t+1 with respect to ky,i,t and account

only for direct effects,

EL
ky,i,t+1

ky,i,t
=
∂ky,i,t+1

∂ky,i,t

ky,i,t
ky,i,t+1

,

that is effects on i’s decisions as opposed to the impact of i’s decisions on decisions of other

agents, which feed back to agent i’s decisions. We write it for brevity as EL(k)t+1
t . It is

easiest to see the effect under the assumption that social networking is given. Then, from

(38) and (39) we have a direct effect,

∂ky,t+1

∂ky,i,t
=
a2

c2
[G(sy,t)G(so,t+1)]col i .

This effect is simply the increase in the transfer to the child, ky,i,t+1, from an increase in first

period wealth received by a member of the tth generation. This is determined from trading

off the resource cost of the transfer, which is incurred by the parent in period t+1, with the

utility increase the parent enjoys from the benefit to the child when the transfer is received

in period t+ 1. This is why both adjacency matrices, G(sy,t) and G(so,t+1), are involved in

the expression for ∂ky,i,t+1

∂ky,i,t
.

However, because the transfer to the child, ky,i,t+1, and the parent’s social networking

effort when old, so,i,t+1, are jointly determined, the full benefit to the child also reflects how

the change in the parent’s social networking effort influences the human capital spillovers,

which are associated with the parents’ human capitals in period t + 1, the second period

of their lives. We see from (39) that ko,i,t+1 is determined, given (ko,i,t, sy,i,t, so,i,t). Thus,

in using the interdependence of (ky,i,t+1, so,i,t+1), as in (41), to express the effect of ky,i,t on
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ky,i,t+1 via so,i,t+1, we have:

∂so,i,t+1

∂ky,i,t+1

= ρa
I∑

j=1,j ̸=i

∂gij
∂so,i,t+1

(so,t+1)ko,j,t+1, (43)

given ko,t+1, so,−i,t+1. Therefore, an effect is generated on ky,i,t+1 due to its dependence on

so,i,t+1, which is obtained by partially differentiating the rhs of (38) with respect to so,i,t+1.

This analysis comes in handy when we examine the impact of differences in the parent’s

or in the child’s own cognitive skills on the transfer to the child. From (38) applied for time

t we have that an individual with higher first-period cognitive skills by,i,t receives a larger

transfers from his parent, ky,i,t
by,i,t

= 1
c
. This in turns induces a change in his own transfer to

his child, along the lines of the effects we just computed. Working in like manner we have

that an increase in the parent’s own second period cognitive skills bo,i,t+1 leads from (38) to

ky,t+1

bo,i,t+1
= a

c2
G(so,t+1)coli, which leads in turn to a change in so,1,t+1, exactly as we analyzed

earlier.

Social effects clearly do affect the elasticities of intergenerational wealth transfers. They

are present when social networking is endogenous, but also when it is exogenous. The

properties of the intergenerational wealth elasticity are summarized by Proposition 8, whose

proof is in the Appendix.

Proposition 8. The elasticity of the transfer to the child, ky,i,t+1, with respect to the transfer

the parent herself received from her own parent, ky,i,t, is given by

Part A.

EL(k)t+1
t =

a2

c2
[G(sy,t)G(so,t+1)]ii×

ky,i,t
a2

c2
[G(sy,t)G(so,t+1)]row i ky,t +

1
c
by,i,t+1 +

a
c2
[G(so,t+1)]row i bo,t+1 − 1

cρ

[
1 + a

c
G(so,t+1)row i1

] .
(44)

It generally varies across individuals.

Part B.

0 < EL(k)t+1
t < 1;

∂

∂ky,i,t
EL(k)t+1

t > 0. (45)

Proposition 8 and Eq. (44) allow us to examine the model’s prediction for the relationship

between intergenerational wealth transfer elasticity and inequality. Corak (2013) popular-

33



ized the so-called “Great Gatsby Curve” for a cross section of countries. The curve shows

that across countries the intergenerational earnings elasticity increases with inequality. In

particular, Corak (2013), Fig. 1, plots the intergenerational elasticity of earnings, against

the Gini coefficient after taxes and transfers, for a number of OECD countries. It shows

that the greater the inequality of earnings the greater the intergenerational elasticity and

therefore the less the mobility in terms of earnings. The fit is not particularly tight, however

popular the curve is, and thus allows for a host of other effects, in principle. Fig. 2 and 3,

ibid., show that in the United States, sons raised by top and bottom decile fathers are more

likely to occupy the same position as their fathers. For sons of top (bottom) earning decile

fathers, the probability that their sons’ income fall in different deciles increases (decreases)

with the income decile.

Intuitively, the larger is EL(k)t+1
t , the greater the inheritability of wealth transfers.

Proposition 8, Part B, gives the exact dependence of EL(k)t+1
t , the elasticity to changes

in the inequality in the components of ky,t. It is straightforward to show that for values of

ky,i,t less (greater) than the mean, EL(k)t+1
t decreases (increases) in the dispersion of ky,i,t

around its mean, while holding the mean constant. Thus, at least when the coefficient of

variation is used as a measure of inequality, the intergenerational wealth transfer elasticity

decreases (increases) with inequality for wealth transfers less (greater) than the mean. Our

prediction above that the elasticity is increasing in the transfer the parent herself receives

is in agreement with the Great Gatsby Curve. The elasticity is decreasing in the child’s

cognitive skill when young and in the cognitive skill when old of the members of the parent’s

generation.

Englund et al. (2013) report empirical results in agreement with Proposition 8, Part B:

estimated intergenerational wealth elasticities range between 0.296 and 0.410, across regres-

sions of log five-year average child’s wealth against the log of five-year average parents’ wealth

for different age groups [ibid., Table A.3], and 0.497 and 0.530, across linear regressions [

ibid., Table 3].
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5.1.3 Moving across Neighborhoods over the Life Cycle

Suppose that individuals’ life cycle consists of additional periods and that in principle in-

dividuals may move across sites. We may associate each period in an individual’s life cycle

with a different site, each of which is characterized by a different social interactions matrix

Gℓ, ℓ = 1, . . . , L. Each agent’s i contribution to the social interactions matrix of each site

consists of a row and of a column. Row i, gij, j ̸= i, expresses the interactions effects from

other agents; column i, gji, j ̸= i, expresses the interactions effects on all other agents. The

multiplicative structure of (38), where agents moving across sites is reflected on the coeffi-

cient of ky,t, which would now be made up of the product of the respective social interactions

matrices, reflecting the effect of the three overlapping generations. Whereas the description

of an individual’s moving is somewhat unwieldy, the model is still helpful in tracking the

evolution of the vector of human capitals for the entire economy as the social interactions

matrix evolves exogenously. It would be interesting to generalize the model to account for

deliberate choice of community, a topic that deserves attention in future research.

5.1.4 Steady States

The system of linear difference equations of section 5.1.1 could be examined further, and the

first-order conditions for the social networking efforts studied in greater depth, especially if

we were prepared to specify an exogenous process for the first- and second-period cognitive

skills and while being cognizant of the stability analysis. We may also obtain more precise

results by using both sets of first-order conditions at the steady state. However, a steady

state analysis typically serves as an important benchmark, and we turn to that next.

Let us assume that the by,i,t, bo,i,t are time-invariant, and let us define

b∗y,i ≡ by,i −
1

ρ
, b∗o,i ≡ bo,i −

1

ρ
.

Proposition 8 summarizes the results. The proof is in Appendix, Proofs.

Proposition 9. The steady state solutions for human capitals (ky,i, ko,i) are defined in terms

of the auxiliary variables ψy =
∑
j ̸=i

sy,jky,j∑
i
sy,i
, ψo =

∑
j ̸=i

so,jko,j∑
i
so,i
.
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Part A. The steady state solutions for human capitals (ky,i, ko,i) satisfy

ky,i =
b∗y,i

c− ρa2ψ2
o

, ko,i =
b∗o,i

c− ρa2ψ2
y

; (46)

sy,i = ρaψy
b∗o,i

c− ρa2ψ2
y

, so,i = ρaψo
b∗y,i

c− ρa2ψ2
o

. (47)

where auxiliary variables (ψy, ψo) satisfy:

ψy =
1

c− ρa2ψ2
o

b∗
y · b∗

o

Ix(b∗
o)
; (48)

ψo =
1

c− ρa2ψ2
y

b∗
y · b∗

o

Ix(b∗
y)
, (49)

where b∗
y · b∗

o =
∑
b∗y,ib

∗
o,i.

Part B. If the vectors of cognitive skills (by,bo) are not too asymmetric, the system of

algebraic equations (48–49) may admit up to two sets of positive solutions, that define high-

level and a low-level equilibria, from which the steady state values of human capitals and

social networking efforts readily follow from (46–47).

Thus, human capitals and networking efforts by young and old, (ky,i, ko,i; sy,i, so,i), are

uniquely defined in terms of the auxiliary variables (ψy, ψo) and parameters. They are

associated with high-level and low-level equilibria. Human capitals (ky,i, ko,i) are proportional

to their respective cognitive skills, ky,i to by,i, and ko,i to bo,i), though with different factors of

proportionality. In contrast, networking efforts, (sy,i, so,i), are proportional to the cognitive

skills corresponding to the life cycle period when individuals avail of them. That is, when

individuals are old, and when their children are young, (bo,i, by,i), again with different factors

of proportionality. This simply reflect the timing conventions that have been incorporated

in the model. Naturally, these solutions allow us again to express the optimum value of

lifetime utility at a steady state for each dynasty as quadratic functions of (by,i, bo,i), with

the economy-wide distributions of the (by,i, bo,i)’s represented through the equilibrium values

of (ψy, ψo). Note that in addition to the auxiliary functions x(b∗
y), x(b

∗
o) the cross-product

b∗
y · b∗

o of first- and second-period cognitive skills also enter, indicating dependence on more

complex moments of the distributions of cognitive skills.
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Equations (48–49) have at most two solutions in (ψy, ψo), which can be characterized

easily but not solved for explicitly. The steady state values of all endogenous variables then

follow. Note that the life cycle model is crucial for the result: ψy and ψo would be equal to

one another, were it not for the fact that, by,i ̸= bo,i, first-period and second-period cognitive

skills are in general not equal to one another. Similarly, interesting complexity and accordant

richness follow if cognitive skills may be influenced by means of investment, which I explore

in section 5.4 further below.

If we were to assume, as in section 3.2, that the social networking efforts are given

exogenously, in that case those of young and of old agents, with values not necessarily

coinciding with the steady state ones, then a number of additional results are possible.

First, under the assumption that the social networking efforts are constant over time, (sy, so),

the system of equations (38–39) implies that a single equation for aggregate capital kt =

ky,t + ko,t, may be obtained. The dynamics are exactly the same as in each of the two

systems and no further discussion is necessary. Second, we may reformulate the evolution of

human capitals in stochastic terms, as in the analysis of section 3.2.1 but now in terms of

(ky,t,ko,t). Similar results regarding stochastic limits in the form of a power law are likely to

be obtained.

Such results may be strengthened in the following way. Intuitively, as the number of

overlapping generations increases, the matrix for human capitals in the laws of motion (38),

(39), becomes the product of increasing number of factors. In the limit, as the number of

overlapping generations tends to infinity, the product of stochastic matrices may be handled

by techniques similar to those of section 3.2.1, leading to power laws.

5.2 Stochastic Shocks to Cognitive Skills

An interesting extension of the model is to allow for the vector of cognitive skills, the by,i, bo,i’s,

to be stochastic. The economy evolves as follows: at time t, individual i is born and her

cognitive skills, by,i,t, and a wealth transfer from her parent ky,i,t are realized. Individual i

avails herself of social interactions in exactly the same way as in the deterministic model
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above. I simplify the model by assuming that socialization efforts remain constant over time,

so by the old, and sy by the young.

For simplicity in demonstrating the basic issues that this extension entails, I assume

that the distribution of Bi,t = (by,i,t, bo,i,t+1; by,i,t+1) is multivariate normal, whose means

bm = (bm,y,bm,o;bm,y+), with (my,i,mo,i,my+,i) as the components of the respective vectors,

and variance-covariance matrix Σ that depend on i. That is, put concisely, the variance-

covariance matrix for Bi = (by,i,t, bo,i,t+1; by,i,t+1) looks as follows:
σ2
b ρoσbσo ρbσbσb+

ρoσbσo σ2
o 0

ρoσbσb+ 0 σ2
b+

 .

The realizations Bi are independent across individuals. The covariance COV(by,i,t, by,i,t+1)

expresses the inheritability of first-period cognitive skills from parents to children; the covari-

ance COV(by,i,t, bo,i,t+1) expresses the dependence between first- and second-period cognitive

skills for the same individual. In view of the above assumptions, the conditional expectations

E [bo,i,t+1|by,i,t] and E [by,i,t+1|by,i,t] are known once by,i,t is realized in the beginning of period

t and as we see shortly, are sufficient to characterize the individual’s decision problem.

Proposition 10. Individual i chooses second period human capital and transfer to her child,

(ko,i,t+1, ky,i,t+1), given the realization of by,i,t, and subject to uncertainty with respect to her

own second period skills and her child’s first period skills, (bo,i,t+1, by,i,t+1).

Part A. Defining the individual’s decision problem of Proposition 7 under uncertainty yields

the first-order conditions in vector form, the stochastic counterpart of (38–39):

ky,t+1 =
a2

c2
G(sy)G(so)ky,t +

1

c
E [by,t+1|t] +

a

c2
G(so)E [bo,t+1|t]−

1

cρ

[
I+

a

c
G(so)

]
1, (50)

ko,t+1 =
a2

c2
G(so)G(sy)ky,t +

1

c
E [bo,t+1|t] +

a

c2
G(sy)E [by,t|t]−

1

cρ

[
I+

a

c
G(so)

]
1, (51)

Part B. Given social connections (G(sy),G(so)), the state of the economy is described by

the stochastic system for (ky,t,by,t), where ky,t evolves according to

ky,t+1 =
a2

c2
G(sy)G(so)ky,t +Gadj(so)by,t +C(so,bm,Σ), (52)
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where

Gadj(so,Σ) = ρb
σb+
cσb

I+ ρo
σo
σb

a

c2
G(so); (53)

C(so,bm,Σ) =
1

c
bm,y+ +

a

c2
G(so)bm,o − ρb

σb+
cσb

bm,y −
a

c2
ρo
σo
σb

G(so)bm,y −
1

cρ

[
I+

a

c
G(so)

]
1

and by,t is an exogenous vector stochastic process, denoting first-period cognitive skills, which

is assumed to be IID across individuals and over time.

Part C. Under the additional assumption that the vector of means and the variance-covariance

matrix are stationary, the stationary steady state satisfies

k∗
y =

a2

c2
G(sy)G(so)k

∗
y +C(so,bm,Σ). (54)

The deviation ∆ky,t = ky,t−k∗
y has a multivariate normal stationary limit distribution with

mean 0 and variance covariance matrix Σ∞ that satisfies:

Σ∞ =
a4

c4
G(sy)G(so)Σ∞G(so)G(sy) +Gadj(so)ΣbG

T
adj(so), (55)

where Σb denotes the variance covariance matrix of by, which under the above assumption

is given by σ2
b I. A necessary and sufficient condition for the existence of a positive definite

matrix Σ∞ is that the matrix a2

c2
G(sy)G(so) be stable, for which by Proposition 7, Part C,

a sufficient condition is that a2

c2
times the product of the largest eigenvalue of G(sy) and of

G(so) be less than 1. For the special case of (2) this condition is (42).

Let us first discuss these results. The conditional expectations on the rhs of Eq. (50)-51)

are expressed in terms of by,t are thus known once the by,i,t’s are realized. This allows us to

solve out for the expectations and rewrite (50) in the form of (52). Furthermore, by using

the envelope theorem in the derivations of Part A, the cognitive skill of an individual’s child,

by,i,t+1, which is realized at the beginning of period t+1 enters via its expectation only, while

the inheritability parameter do enter the derivations. Thus the resulting Eq. (52), which

is stochastic, may be solved in the standard fashion for such stochastic equations, which is

accomplished by Part C above.

The properties of G(sy),G(so) are crucial determinants of the properties of the mean,

k∗
y, and of the variance-covariance matrix of the limit distribution, Σ∞. It is thus clear that
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social networking has a profound effect on the steady state distribution of human capitals.

Both their limit mean and variance display complex dependence on the properties of social

networking and of the parameters (bm,Σ) of the process of cognitive shocks By,t.

It is straightforward to generalize the above results if different individuals’ cognitive

skills, the components of by, are not independent and identically distributed draws from the

same distribution. In such a case, Σb is not an identity matrix multiplied by σb but may

have different values along the diagonal as well as non-zero entries off the main diagonal;

the derivation of (53) has to be adjusted accordingly. However, it is interesting that even

if components of by are not independent and identically distributed random variables, the

variance covariance matrix of human capital displays a lot of richness, on account of the

social interactions structure.

5.3 Stochastic Shocks to Non-Cognitive Skills

James Heckman and his collaborators have argued that economists can help decisively in

establishing quantitatively the role of non-cognitive skills on par with cognitive skills in hu-

man development. See Heckman (2008). Economists often concentrate on the so-called “Big

Five”, abbreviated as OCEAN.17 It is understood that these factors represent personality

traits at the broadest level of abstraction, and summarize a large number of distinct, more

specific personality traits, all of which are subject to intensive research by psychologists and

now by economists. as well.18 In an admittedly cavalier manner, I adopt ( for the purpose

of exposition) the convention that the social interactions coefficient a which expresses the

value an individual attaches to social interactions measures non-cognitive skills, in the sense

17These are: Openness (curiosity and receptivity), Conscientiousness (including being well organized and

efficient), Extraversion (including friendliness and whether one is high energy), Agreeableness (including

friendliness and compassion), and N euroticism (which includes self-confidence and sensitivity to stress).
18In a key contribution to the empirical literature on skill formation, Cunha, Heckman and Schennach

(2010) estimate the technology of cognitive and non-cognitive skill formation. They allow for adult outcomes

to develop from a multistage process, where cognitive and non-cognitive skills in each stage are produced

(by means of CES production functions) by cognitive and non-cognitive skills at the preceding stage along

with investment and the cognitive and non-cognitive skills of an individual’s parents.
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of an individual’s ability to benefit from social interactions reflects personality traits.

I redefine the individual’s decision problem to individualize it as (ay,i,t, ao,i,t+1) and assume

that it is a random variable. We redefine the value functions of Proposition 7, Part A, when

choosing (ko,i,t+1, ky,i,t+1), and consequently the individual treats as uncertain the value that

she would derive from ko,i,t+1 in her second period of her own life and the value accruing to

her child from the transfer ky,i,t+1. The former depends on the human capitals of others,

ky,j,t, j ̸= i, which are known when she makes the decision at time t, but the effect depends

on the realization of ay,i,t+1. The latter depends on the cognitive skills of the child at time

t+1 and the realization of the social interactions effect ao,i,t+2 at time t+2. The results are

summarized by Proposition 11; the proof is immediate.

Proposition 11. Under the assumption that the social interactions coefficients in the prob-

lem defined by Proposition Part A is a random variable, the value functions for individ-

ual i as of time t and for her child as of time t + 1 and defined respectively as follows,

V [t]
i (ky,i,t, so,t; ai,t), V [t+1]

i (ky,i,t+1, so,t+1; ai,t+1), are associated with an individual’s lifetime

utility when he is young at t and when he is old at t+ 1, we have:

V [t](ky,i,t, so,t; ai,t)

= max
Eai,t+1

{ko,i,t+1,ky,i,t+1;sy,i,t,,so,i,t+1}
Eai,t+1

by,i,tky,i,t + ai,t
∑
j ̸=i

gij(so,t)ky,i,tko,j,t −
1

2
ck2y,i,t −

1

2
s2y,i,t − ko,i,t+1

+ρ

bo,i,t+1ko,i,t+1 + a
∑
j ̸=i

gij(sy,t)ko,i,t+1ky,j,t −
1

2
ck2o,i,t+1 −

1

2
s2o,i,t+1 − ky,i,t+1

+ ρV [t+1]
i (ky,i,t+1, so,t+1; ai,t+1)

 ;

V [t+1]
i (ky,i,t+1, so,t+1; ai,t+1)

= max
{ko,i,t+2,ky,i,t+2;sy,i,t+1,,so,i,t+2}

Eai,t+2

by,i,t+1ky,i,t+1 + ai,t+1

∑
j ̸=i

gij(so,t+1)ky,i,t+1ko,j,t+1 −
1

2
ck2y,i,t+1 −

1

2
s2y,i,t+1 − ko,i,t+2

+ρ

bo,i,t+2ko,i,t+2 + ai,t+1

∑
j ̸=i

gij(sy,t+1)ko,i,t+2ky,j,t+1 −
1

2
ck2o,i,t+2 −

1

2
s2o,i,t+2 − ky,i,t+2

+ ρV [t+2]
i (ky,i,t+2, so,t+2; ai,t+2)

 .

Under the assumption that that the networking efforts are constant, sy,t = sy, so,t = so, the

first-order conditions for human capitals (ky,i,t+1, ko,i,t+1) in vector form are:

ky,t+1 =
Āy,t+1Āo,t+1

c2
G(sy,t)G(so,t+1)ky,t+

1

c
by,t+1+

Āy,t+1

c2
G(so,t+1)bo,t+1−

1

cρ

[
I+

Āy,t+1

c
G(so,t+1)

]
1.

(56)
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ko,t+1 =
Āy,t+1Āo,t+1

c2
G(so,t)G(sy,t)ko,t +

1

c
bo,t+1 +

Āy,t

c2
G(sy,t)by,t −

1

cρ

[
I+

a

c
G(sy,t)

]
1,

(57)

where Āy,t+1, Āo,t+1 denote the diagonal matrices composed of the conditional means

E [ay,i,t+1|t], E [ao,i,t+1|t].

Part B. If Āy,, Āo,t are time invariant, sufficient conditions for the existence of meaningful

steady state values of (ky,ko) amount to sufficient conditions for the invertibility of

I− 1

c2
ĀyĀoG(so)G(sy), (58)

namely that the product of the largest ay,iao,i
c2

times the largest eigenvalues of each of the

matrices G, (so)G(sy) be less than 1.

Allowing for a stochastic non-cognitive shock via parameters ai,t’s does not change sub-

stantially the first-order conditions. The linear-quadratic nature of the problem makes for

only the conditional means to enter, and the difference from the deterministic case is note-

worthy only if the random variables ai,t were not IID over individuals and time. E.g., if

ai,t is serially correlated over time, the system of equations (56–57) becomes stochastic.

It is also conceptually straightforward to allow for correlation between cognitive and non-

cognitive shocks, that is between ai,t and first-period cognitive skills, by,i,t, and therefore with

(by,i,t+1, bo,i,t+1), as well. Such a generalization may be accommodated by the tools employed

by Proposition 10. Although the derivations would not be trivial extensions of Proposition

10, they are tractable. The steady state means and variance covariance matrix would reflect

the stochastic dependence parameters between the stochastic processes for by,t, ay,t. The fact

that incorporating stochastic variation in non-cognitive skills (or, social competence) is fairly

tractable is good news from the viewpoint of seeing the impact of all three possible sources of

variation of human capitals across the population. Although solving (56)–57) for the steady

states is no longer so straightforward as before, the three sources of variation are clear. For

both the ky,i’s and the ko,i’s, the respective period autarkic solution, 1
c
by,i is augmented by

means of a component that reflects social interactions in both periods multiplicatively, ad-

justed by the mean non-cognitive skills, and a component that reflects 1
c
bo,i, adjusted by the
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social interactions weights associated with the second period in individuals’ lifetimes and by

the mean non-cognitive skills. Thus, individuals’ non-cognitive skills have spillovers on other

individuals’ behavior. The expressions for the steady-state solutions are little simplified if

we assume that the mean non-cognitive effects and the social interaction weights are time

invariant and equal across first- and second periods of individuals’s lifetimes.

Furthermore, the stochastic structure for the (ay,t, ao,t+1) may be generalized to allow

for persistent heterogeneity and random variation in each period. This would allow one to

compare the empirical performance of such extensions of the model with alternative formu-

lations that allow for amplification of social interactions effects either intergenerationally,

as suggested by the results of Lindahl et al. (2015), or within and across social groups, as

elaborated by Ioannides and Loury (2004) and Calvó-Armengol and Jackson (2004).

5.4 Investment in Cognitive Skills in a Model of Two Overlapping

Generations with Two Subperiods Each

We reformulate the model to allow individuals to use resources to influence the cognitive

skills of their children, while we retain the feature that their social networking decisions

also influence their children’s social networks, via the social structure which influences the

child but results from parents’ decisions. We continue to interpret the latter as influence

via non-cognitive skills. We retain the overlapping generations structure and assume that

youth and adulthood lasts for two subperiods each, early youth and youth, and adulthood

and old age, respectively. Here t indexes subperiods. So, an adult at time t, who was born

at time t− 2 and is in her third subperiod of her life, gives birth to a child. The child lives

for four subperiods, t, t + 1, t + 2, t + 3, during two of which she overlaps with the parent

who is still alive, and then lives on for two more subperiods. She in turn gives birth to her

own children at time t+2, when she herself is an adult. Individuals make decisions affecting

the household only in adulthood and old age. For a child born at time t, her cognitive skills

when she become an adult at time t+ 2 are determined19 by the given input at birth, by,i,t,

19The assumption of infinite substitutability of investments in cognitive skills according to (59) is a limit

case of the assumption of finite substitutability by Heckman and Mosso (2014), and is made for analytical
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which may be constant, and investments (ιc1,t, ιc2,t+1):

by,i,t+2 = bo,i,t+3 = β0by,i,t + β1ιc1,t + β2ιc2,t+1, (59)

where β0, β1, β2 are positive parameters, and (ιc1,t, ιc2,t+1) are resource costs, which are in-

curred, contemporaneously with the respective adjustment costs, in time periods t, and t+1,

the first and second subperiods in a child’s life time, 1
2
γ1ι

2
c1,t,

1
2
γ1ι

2
c2,t+1, respectively. Invest-

ments (ιc1,t, ιc2,t+1) as decision variables are part of the individual’s life cycle optimization.

Proposition 12. For an individual born at t, cognitive skills and human capital in period

t are given, (by,i,t, ky,i,t); she benefits from the networking efforts of the parents’ genera-

tion, so,t−1, who are in the third subperiod of their lives. She chooses at time t her own

second subperiod human capital and the first subperiod transfer to her own child at time

t + 2, respectively {ko,i,t+1, ky,i,t+2}; and the first and second subperiod networking efforts,

{sy,i,t,, so,i,t+1}, respectively. She benefits herself in her own second subperiod and her child

benefits when the child is in her first subperiod of her life and the parent herself in her

third subperiod of her life. The adjustment costs for decisions {sy,i,t,, ko,i,t+1}, are incurred

in period t. The optimization problem treats the cognitive skills, by,i,t+2, of the individual’s

child and the transfer she receives when she becomes an adult, ky,i,t+2, as being determined

simultaneously.

Part A. The first order conditions for (ιc1,t, ιc2,t+1) yield:

by,i,t+2 = bo,i,t+3 = β0by,i,t + ρρβ[ky,i,t+2 + ρko,i,t+3]− ρβ, (60)

where parameter ρβ is defined as ρβ ≡
(
ρβ1
γ1

+ β2
γ2

)
.

Part B. The first-order conditions with respect to (ky,t+2,ko,t+2) (in vector form) yield a

first-order linear difference system in ko,t+2:

ko,t+3 = beff +
a

ρ∗c
G(sy,t+2)

[
I− â

c
G(sy,t+2)

]−1
a

ρ̃ccs
G(so,t+2)ko,t+2, (61)

where ρ∗ ≡ 1− ρ2ρβ
c
, ρ̃ ≡ 1− ρρβ

ccs
, ccs ≡ c− ρρβ, and

â ≡ aρ2ρβ
ρ∗ρ̃ccs

(
1−

ρ3ρ2β
ρ∗ρ̃cccs

)−1

,

convenience.
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and beff are constant. The optimal ky,t+2 follows from ko,t+2 according to:

ky,t+2 =

[
I− â

c
G(sy,t+2)

]−1 [
b′
eff +

a

ρ̃ccs
G(so,t+2)ko,t+2

]
, (62)

where b′
eff is a constant.

Part C. The stability of (61) rests on the spectral properties of

a

ρ∗c

a

ρ̃ccs
G(sy,2)G(so,2)

[
I+

â

c

x(sy,2)

x(sy,2)− â
c
x2(sy,2)

G(sy,2)

]
, (63)

provided that
â

c

x2(sy,2)

x(sy,2)
< 1.

A sufficient condition for the stability of (61) is that a
ρ∗c

a
ρ̃ccs

times the product of the maximal

eigenvalue of G(sy,2) and of G(so,2) times 1 plus the maximal eigenvalue of

â

c

x(sy,2)

x(sy,2)− â
c
x2(sy,2)

G(sy,2)

be less than 1.

It follows that the first-order condition for ky,i,t+2 must reflect the influence that decision

has, as implied by the optimization problem, on by,i,t+2. Since by,i,t+2 = bo,i,t+3 the utility

per period from the last two subperiods of the child’s lifetime contribute to the first-order

conditions.

In a notable difference from the previous model, we now see a key new role for the social

networking that individuals avail of when young. The product G(sy,t+2)G(so,t+2) is adjusted

by
[
I− â

c
G(sy,t+2)

]−1
. Intuitively, this effect acts to reinforce the effects of social networking

when young. This readily follows from (61) and (62) above. Feedbacks are generated due to

the investment in cognitive skills.

It is important to recognize that the derivation of (61), as well as those of (38) and

(39) earlier, do not make use of first-order conditions for the social connections. Therefore,

if we were to expand the number of overlapping generations, then the system of linear

equations in the human capitals is updated iteratively and links the initial and final human

capital vectors by means of the product of the social interactions matrices associated with
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each intervening generation. Thus, in an extension of the model where individuals may

move across communities and avail themselves of different social interactions in different

communities, the impact of residential histories is reflected on the product of the respective

matrices. As indicated earlier in section 5.1.3 above, it would be interesting to address

in future research the equilibrium outcome for an entire economy when individuals make

deliberate decisions about community choice.

6 Conclusions

The dynamic models analyzed by this paper offer a novel view of the joint evolution of

human capital investment and social networking. Those of the models that are embedded

in overlapping generations frameworks inherit the full potential (along with all strengths

and weaknesses) of that workhorse of modern growth theory and macroeconomics. The

analysis first takes advantage of formal similarities between infinite horizon dynastic life cycle

modeling and overlapping generations models with intergenerational transfers. The dynamic

models of the paper share the important feature namely that individuals’ lifetime human

capital accumulation plans are distinguished from intergenerational transfers, while allowing

for an endogenous social structure. The model where endogenous investment influences

the cognitive skills of one’s child is analytically considerably more complicated than when

cognitive skills are given, however, because of additional dynamic complexity. In our basic

model with overlapping generations, individuals receive a transfer from their parents in the

first period of their lives and avail themselves of the social connections that their parents

chose at that same period. They in turn choose their own second-period human capital,

own second-period social connections, and transfer to their children. The dynamical system

involving the vectors of life cycle accumulation and transfers, given the social network, is

still linear in those magnitudes and tractable. The endogeneity of the social structure makes

that analysis quite more complicated but considerably richer. Yet, the tools of the paper

do allow us to study the underlying steady states for individuals’ life cycle accumulation,

intergenerational transfers, and social connections for themselves and for their children in
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great detail. The elasticity of the intergenerational transfer received by an individual is

increasing in the intergenerational transfer received by the parent, exhibits rich dependence

on social effects, and is positive and less than 1.

Interestingly, the consequences for inequality of the endogeneity of social connections are

underscored by examining our models when social connections are assumed to be exogenous.

When social connections are an outcome of ad hoc decision making and not optimized, indi-

viduals’ human capital reflect an arbitrarily more general dependence on social connections

across individuals. The dependence does not reduce to aggregate statistics and highlights

both “whom you know” and “what you know” in the determination of individual incomes.

When individuals optimize over their social connections, their actions make up for the arbi-

trariness of outcomes and thus reduce dependence of a fewer set of fundamentals.

There are many aspects of the present paper that deserve further attention in future

research. To name a few, in addition to the need to deal with the equilibrium selection

problem and to develop a full stochastic formulation, one would be to fully explore the

interfaces between network formation and neighborhood choice, where one must also account

for the costs associated with clustering to attractive neighborhoods; another would be to

allow individuals to learn from others’ social competence and to introduce a firmer link with

the job market; yet another would be to examine how the network formation process might

be influenced by public policy. Modeling explicitly the acquisition of cognitive and non-

cognitive skills as a joint process and their importance as components of jobs also appears

to be interesting. Although no general theory of network formation is available, endogenous

networks may be defined for those different classes of problems, all of which bear upon the

emergence of inequality.
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FOR ONLINE PUBLICATION

8 Appendix A: Proofs

8.1 Proposition 1. Proof

It readily follows from (10) that the necessary conditions imply that si
ki

is independent of i.

Let the common ratio be
si
ki

= ϖ. (64)

With the notation introduced in (4) above, the auxiliary term λa/c in (11) becomes, using

(10):

λa/c =
a

c

x̄(s)

x̄(s)− a
c
x2(s)

=
a

c−ϖ2
.

In view of these results, (11) is simplified as follows:

cki = bi +
a

c−ϖ2
si

∑I
j=1 bjsj

I s̄
. (65)

Using the previous results with the equation, it follows that ki/bi is constant,

ki
bi

= ϑ. (66)

Thus,

cϑ = 1 + ϑ
a

c−ϖ2

x2(b)

x(b)
,

Recalling the definition of ã in (3) above, (10) becomes:

ϖ = ãϑ. (67)

This allows us to write the above condition as:

ϑ =
1

c−ϖ2
. (68)

The system of equations (67–68) define the solution (ϖ∗, ϑ∗), to the multi-person game.

The solutions for (ki, si) follow:

k∗i = ϑ∗bτ(i), si = ϖ∗ϑ∗bτ(i). (69)

Q.E.D.
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8.2 Proposition 2. Proof

For this case, the first-order conditions are:

bi + asi min
j ̸=i

{kj} − cki = 0; (70)

aki min
j ̸=i

{kj} − si = 0. (71)

This leads a system of two equations, just as before:

ϑ−1 + aϖ min
j ̸=i

{kj} = c; (72)

amin
j ̸=i

{kj} = ϖ. (73)

Disregarding the imprecision that minj ̸=i{kj} = minj∈I{kj} we have that minj∈I{kj} =

ϑminj∈I{bj} = bmin. Thus,

ϖ = abmin, ϑ =
1

c− (abmin)2
,

and solutions (17 follow. Q.E.D.

8.3 Proposition 3. Proof

8.3.1 The Best Individual is the Role Model”

For this case, the first-order conditions are:

bi + asimax
j ̸=i

{kj} − cki = 0; (74)

akimax
j ̸=i

{kj} − si = 0; (75)

By substituting for si from (75) into (74), the resulting equations are defined solely in terms

of k as fixed points of:

ki =
bi
ci

1

c− a2 (maxj ̸=i{kj})2
, i ∈ I.

By working in like manner as above, we have that:

ϖ = abmax, ϑ =
1

c− (abmax)2
,

and kj = bj
1

c−(abmax)2
, sj = bj

abmin

c−(abmax)2
. and solutions (18 follow. Q.E.D.
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8.4 Proposition 4. Proof

For this case, the first-order conditions are:

ψi + asi Eψj|ψi max
j ̸=i

{kj(ψj)} − cki = 0; (76)

aki Eψj|ψi max
j ̸=i

{kj(ψj)} − si = 0; (77)

By substituting for si from (77) into (76), we get:

ki(ψi)

ψi
=

1

c− a2
[
Eψj|ψi maxj ̸=i{kj(ψj)}

]2 . (78)

Under our assumption that the ψi’s are independently distributed, the RHS of (78) does

not depend on ψi and therefore so should the LHS. This suggests that ki(ψi)
ψi

= νi, where νi

is an deterministic endogenous variable, that is independent of ψi and ψj, j ̸= i but does

depend on all parameters of the problem. That is, ki(ψi) = ψiνi, ∀i ∈ I. Condition (78) may

be rewritten as:

νi =
1

c− a2
[
Eψj|ψi maxj ̸=i{νjψj}

]2 , i ∈ {I}. (79)

Let us assume that the random variables ψj are Fréchet-distributed and conditionally in-

dependent, whose cumulative distribution is given by: exp
[
−
(
ψ−mi
σi

)−χ]
, where (mi, σi, χ)

are positive parameters, denoting the minimum, scale, and shape parameters, respectively. It

follows that the cumulative distribution function of ψiνi is given by: exp
[
−
(
κ−miσi
νiσi

)−χ]
. The

corresponding cumulative distribution function of maxj ̸=i{σjνj} is given Πj ̸=i (Prob {ψjνj ≤ κ}) .

The expectation of maxj ̸=i{ψjνj} is obtained by integrating the density corresponding to the

above cumulative distribution function. The expectation is a function of the νj’s, and so

is the RHS of (79). The unknown (ν1, . . . , νi, . . . , νI) follow as solutions to the system of

equations (79). The solutions for the networking efforts, the si’s, follow from (77).

If the ψi’s are identically distributed,mi = m,σi = σ, then the expectation of maxj ̸=i{ψjνj}

is readily obtained from the extreme order statistics theory and defines only one ratio, ν.

The maximum of the realizations of a number of independently and identically Fréchet

distributed random variables is also Fréchet distributed with scale parameter I
1
χσ. Its ex-

pectation is given in closed form by m+ I
1
I νσΓ

(
1− 1

χ

)
, provided that χ > 1. The unknown
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ν satisfies

ν =
1

c− a2
[
m+ I

1
I σΓ

(
1− 1

χ

)]2
ν2
, (80)

which is a cubic equation in ν. Depending upon parameter values, this equation may have

either one or two feasible solutions, or none. Feasibility is conceptual similar to condition

(15), with ã now defined as:

ã ≡ a

[
m+ I

1
χσΓ

(
1− 1

χ

)]
. (81)

Q.E.D.

8.5 Proposition 5. Proof

It is easier to work with the scalar versions of Eq. (22) – (23):

kit =
1

c
bτ(i) +

a

c

I∑
j=1,j ̸=i

gij(st−1)kj,t−1; (82)

sit = aρ
I∑

j=1,j ̸=i
kit+1kjt

∂gij(st)

∂sit
, (83)

The proof of Part A is straightforward. Part B follows readily once we remove the time

subscripts. Regarding Part C we work as follows. By linearizing system (22–23) in the

standard fashion and by denoting by ∆xit = xit−x∗i deviations from steady-state values, we

have:

∆kit =
a

c

I∑
j=1,j ̸=i

gij(s
∗)∆kj,t−1 +

a

c

I∑
j=1,j ̸=i

k∗j

I∑
h=1

∂gij
∂sh

|s∗∆sh,t−1. (84)

∆sit = aρk∗i

I∑
j=1,j ̸=i

k∗j

I∑
h=1

∂2gij
∂si∂sh

|s∗∆sht+aρk∗i
I∑

j=1,j ̸=i

∂gij
∂si

|s∗∆kjt+

aρ I∑
j=1,j ̸=i

k∗j
∂gij
∂si

|s∗
∆kit+1,

(85)

where except for the time-subscripted variables, all others assume their steady-state values.

The asymptotic results invoked earlier allow us to simplify these conditions.First, we note

that:
∂gij
∂sh

= − sisj(∑I
h=1 sh

)2 , h ̸= i, j;
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∂gij
∂si

=
sj
∑
h̸=i sh(∑I

h=1 sh
)2 ;

∂gij
∂sj

=
si
∑
h̸=i sh(∑I

h=1 sh
)2 ;

The terms sj
∑
h̸=i sh tend to Iϖ2ϑ2b̄, and the terms

(∑I
h=1 sh

)2
tend toϖϑI2(b̄)2. Therefore,

as I → ∞, the derivatives above tend to zero and the second term in the rhs of (84) and of

(85) vanish. Similarly, the first term in the rhs of (85) also vanishes. System (84–85) may

now be written as follows, where we advance the time subscript for t in the first equation:

∆kt+1 =
a

c
G(s∗)∆kt, (86)

∆st = ρãϑ∆kt+1. (87)

By using (86) in (87) we see that the changes in networking efforts, ∆st, are determined by

the contemporaneous values of the changes in human capitals, the ∆kt’s. That is:

∆st =
aã(b)ρϑ

c
G(s∗)∆kt. (88)

The dynamic evolution of the human capitals is determined by (24), and therefore of the

networking efforts as well through (88).

The properties of the matrix a
c
G(s∗) fully determines the dynamics, and its properties

are in turn determined by those of the steady state solutions. We know from Cabrales et

al. (2011) that the largest eigenvalue of G(s∗) is equal to x2(s∗)

x(s∗)
and corresponds to s as an

eigenvector. Therefore, the condition

a

c

x2(s)

x(s)
=

1

c
ϖϑã < 1

is sufficient for the stability of the solution of (86). In view of Proposition 1, this condition

becomes:

ϖ2 < c,

which is satisfied for both non-zero steady states.

For the stability of (88) it is required that

aã(b)ρϑ

c

x2(s∗)

x(s∗)
=
ρ

c
ϖ3 < 1.

A sufficient condition for this to hold is that ρ < ϖ−1 < 1. Q.E.D.
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8.6 Proposition 6. Proof

As indicated in the text, we assume that the social interactions matrix G̃t = G̃(Φt) is defined

to include the diagonal terms too. We assume that the pairs
{
G̃t,Ψt

}
are independently

and identically distributed elements of a stationary stochastic process with positive entries.

Adopting as matrix norm || · || for I × I matrices the function ||m|| = max|y|=1 |ym|, where

y denotes an I row vector, and m denotes an I × I matrix.20 If

E ln+ ||G̃(Φ1)|| < 0,

then

Lim1 = lim
(
ln ||G̃(Φ1) · · · G̃(Φt)||

1
t

)
(89)

exists, is constant and finite w.p. 1. If we assume that the G̃’s are such that Lim1 < 0, then

||G̃(Φ1) · · · G̃(Φt)|| converges to 0 exponentially fast. If |Ψ1|κ < ∞ for some κ > 0, that is

if the starting shock is not too large, with the norm | · | being defined as the Euclidian norm,

then the series of the vectors of human capital

K ≡
∞∑
t=1

G̃(Φ1) · · · G̃(Φt−1)Ψt

converges w. p. 1, and the distribution of the solution k̃t of (31) converges to that of K,

independently of k̃0. This is simply a rigorous way to establish the limit human capital

vector.

In particular, from (89), if Lim1 < 0, then the norm of the product of t successive social

interactions matrices, raised to the power of t−1, is positive but less than 1. In that case,

Kesten (1973) shows that the distribution ofK can have a thick upper tail. That is, according

to Kesten (1973), Theorem A, if in addition to the above conditions there exists a constant

κ0 > 0, for which

E

 1

I
1
2

min
i

 I∑
j=1

G̃1i,j


κ0

≥ 1, and E
{
||G̃1||κ0 ln+ ||G̃1||

}
<∞, (90)

then there exists a κ1 ∈ (0, κ0] such that

lim
v→∞

Prob
{
max
n≥0

|xG̃1 · · · G̃n| > v
}
∼ X(x)v−κ1 , (91)

20The notation ln+, defined as follows: ln+ x = min{lnx, 0.}
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where 0 ≤ X(x) < ∞, with X(x) > 0, where the (row) vector x belongs to the positive

orthant of the unit sphere of IRI , exists and is strictly positive. If, in addition, the components

of Ψ1 satisfy:

Prob {Ψ1 = 0} < 1, Prob {Ψ1 ≥ 0} = 1, E|Ψ1|κ1 <∞,

then for all elements x on the unit sphere in IRI , then condition (33) follows. That is, the

upper tail of the distribution of xK,

lim
v→∞

vκ1Prob {xK ≥ v} (92)

exists, is finite and for all elements x on the positive orthant of the unit sphere in IRI is

strictly positive.

The intuition of condition (90) is that if there exists a positive constant κ0, for which the

expectation of the minimum row sum of the social interactions matrix raised to the power

of κ0, grows with the number of agents I faster than
√
I, roughly speaking, but does not

grow too fast so as to blow up, then the contracting effect of the social interactions system

does not send human capitals to zero, when the economy starts from an arbitrary initial

condition, say when when all initial human capitals are uniformly distributed. The intuition

of condition (89) is that the geometric mean of the limit of the sequence of norms of the

social interactions matrix is positive but less than 1. Q.E.D.

8.7 Proposition 7. Proof

The decision problem for a member of generation t, born at time t, is to choose

{ko,i,t+1, ky,i,t+1; sy,i,t,, so,i,t+1},

given {ky,i,t, so,t}. We express the first-order conditions by first defining the value functions

V [t]
i (ky,i,t, so,t),V [t+1]

i (ky,i,t+1, so,t+1), associated with an individual’s lifetime utility when he

is young at t and when he is old at t+ 1, we have:

V [t](ky,i,t, so,t)

= max
{ko,i,t+1,ky,i,t+1;sy,i,t,,so,i,t+1}

by,i,tky,i,t + a
∑
j ̸=i

gij(so,t)ky,i,tko,j,t −
1

2
ck2y,i,t −

1

2
s2y,i,t − ko,i,t+1
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+ρ

bo,i,t+1ko,i,t+1 + a
∑
j ̸=i

gij(sy,t)ko,i,t+1ky,j,t −
1

2
ck2o,i,t+1 −

1

2
s2o,i,t+1 − ky,i,t+1

+ ρV [t+1]
i (ky,i,t+1, so,t+1)

 .
Correspondingly,

V [t+1]
i (ky,i,t+1, so,t+1)

= max
{ko,i,t+2,ky,i,t+2;sy,i,t+1,,so,i,t+2}

by,i,t+1ky,i,t+1 + a
∑
j ̸=i

gij(so,t+1)ky,i,t+1ko,j,t+1 −
1

2
ck2y,i,t+1 −

1

2
s2y,i,t+1 − ko,i,t+2

+ρ

bo,i,t+2ko,i,t+2 + a
∑
j ̸=i

gij(sy,t+1)ko,i,t+2ky,j,t+1 −
1

2
ck2o,i,t+2 −

1

2
s2o,i,t+2 − ky,i,t+2

+ ρV [t+2]
i (ky,i,t+2, so,t+2)

 .
Parts A and B readily follow. The first-order conditions with respect to (ko,i,t+1, sy,i,t,; ky,i,t+1, so,i,t+1)

are, respectively:

ko,i,t+1 =
1

c
bo,i,t+1 +

a

c

∑
j ̸=i

gij(sy,t)ky,j,t −
1

cρ
; (93)

sy,i,t = ρako,i,t+1

I∑
j=1,j ̸=i

∂gij
∂sy,i,t

(sy,t)ky,j,t; (94)

−ρ+ ρ
∂V [t+1]

i

∂ky,i,t+1

(ky,i,t+1, so,t+1) = 0;

−ρso,i,t+1 + ρ
∂V [t+1]

i

∂so,i,t+1

(ky,i,t+1, so,t+1) = 0.

Using the envelope property, the partial derivatives of the value function above,

∂V [t+1]
i

∂ky,i,t+1

(ky,i,t+1, so,t+1),
∂V [t+1]

∂so,i,t+1

(ky,i,t+1, so,t+1)

are equal to the partial derivatives of the respective utility per period. That is, using the

envelope property, the last two equations become:

ky,i,t+1 =
1

c
by,i,t+1 +

a

c

∑
j ̸=i

gij(so,t+1)ko,j,t+1 −
1

cρ
; (95)

so,i,t+1 = ρaky,i,t+1

I∑
j=1,j ̸=i

∂gij
∂so,i,t+1

(so,t+1)ko,j,t+1; (96)

We can summarize the first-order conditions for the k’s in matrix form as follows.

ko,t+1 =
1

c
bo,t+1 +

a

c
G(sy,t)ky,t −

1

cρ
1; (97)
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ky,t+1 =
1

c
by,t+1 +

a

c
G(so,t+1)ko,t+1 −

1

cρ
1, (98)

where 1 is a I− vector of 1’s. From these we may obtain two single first-order difference

equations: first in ky,t, by substituting for ko,t+1 from (97) in the rhs of (98), and then in

ky,t, by substituting for ky,t from (98) in the rhs of (97). That is, (38 – 39) in the main text

follow, reproduced here as well for clarity:

ky,t+1 =
a2

c2
G(sy,t)G(so,t+1)ky,t +

1

c
by,t+1 +

a

c2
G(so,t+1)bo,t+1 −

1

cρ

[
I+

a

c
G(so,t+1)

]
1. (99)

ko,t+1 =
a2

c2
G(so,t)G(sy,t)ko,t +

1

c
bo,t+1 +

a

c2
G(sy,t)by,t −

1

cρ

[
I+

a

c
G(sy,t)

]
1. (100)

Part C. Since the largest eigenvalue of G(so)G(sy) is bounded upwards by the product

of the largest eigenvalues of G(so) and G(sy) [Debreu and Herrstein (1953); Merikoski and

Kumar (2006), Thm. 7, 154–155], the inverse exists, provided that the product of a2

c2
with

the largest eigenvalues of G(so) and of G(sy) is less than 1. A sufficient condition for this is

that the products of a
c
and each of the largest eigenvalues of G(so),G(sy) are less than 1.

Q.E.D.

8.8 Proposition 8. Proof

Part A readily follows from the derivations in the main text and the following derivation,

for the total effect of an increase in first period wealth on the transfer to the child. That is,

from (38) and (41) we have:

d ky,i,t+1

d ky,i,t
=
∂ky,i,t+1

∂ky,i,t

1 + ρa
I∑

j=1,j ̸=i

∂gij
∂so,i,t+1

(so,t+1)ko,j,t+1
∂so,i,t+1

∂ky,i,t+1

 ,
where the partial derivative of ky,t+1 with respect to so,i,t+1 is given by:

a2

c2
G(sy,t)

∂

∂so,i,t+1

G(so,t+1)ky,t +
∂

∂so,i,t+1

G(so,t+1)

[
a

c2
bo,t+1 −

a

ρc2
1

]
,

with

∂

∂so,i,t+1

G(so,t+1) =


0 0 . . . so,1,t+1∑

j ̸=1
so,1,t+1

. . . 0

so,1,t+1∑
j ̸=i so,j,t+1

so,2,t+1∑
j ̸=i so,j,t+1

. . . 0 . . .
so,I,t+1∑
j ̸=i so,j,t+1

0 0 . . .
so,I,t+1∑
j ̸=I so,j,t+1

. . . 0

 ,
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Part B follows by inspection of (44), and provided that the sufficient conditions for the

positivity of (ky,t,ko,t) in Part B, Proposition 7, hold. Q.E.D.

8.9 Proposition 9. Proof

Part A. By applying equations (97), (94), (98), and (96) we have:

cko,i = b∗o,i + asy,i
∑
j ̸=i

sy,jky,j∑
i sy,i

; (101)

sy,i = ρako,i
I∑

j=1,j ̸=i

sy,jky,j∑
i sy,i

; (102)

cky,i = b∗y,i + aso,i
∑
j ̸=i

so,jko,j∑
i so,i

; (103)

so,i = ρaky,i
I∑

j=1,j ̸=i

so,jko,j∑
i so,i

. (104)

Note that the auxiliary variables, ψy, ψo, defined in the main text do not depend on i. From

(101) and (102), and (104) and (104), we have:

ρko,i(cko,i − b∗o,i) = s2y,i = ρ2a2ψ2
yk

2
o,i;

ρky,i(cky,i − b∗y,i) = s2o,i = ρ2a2ψ2
ok

2
y,i.

We may thus solve for ky,i, ko,i, and then by using the definitions of ψy, ψo, for sy,i, so,i, we

obtain solutions for ky,i, ko,i and sy,i, so,i in terms of (ψy, ψo) as in (46–47 ) in the main text.

Finally, by substituting back into the definitions of ψy, ψo, we obtain obtain third-degree

equations in ψy, ψo, (48–49).

Part B. Equations (48–49) have at most two solutions in (ψy, ψo), provided that

b∗
y · b∗

o

Ix(b∗
y)
<
c

a

(
c

ρ

) 1
2

;
b∗
y · b∗

o

Ix(b∗
o)
<
c

a

(
c

ρ

) 1
2

.

Q.E.D.
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8.10 Proposition 10. Proof

Part A. Transforming the individual’s decision problem in the obvious way allows us to derive

first order conditions, the stochastic counterpart of (38)–39). They are as follows:

ky,i,t+1 =
1

c
E [by,i,t+1|by,i,t; t] +

a

c

∑
j ̸=i

gij(so)E [ko,j,t+1|i, t]−
1

cρ
; (105)

ko,i,t+1 =
1

c
E [bo,i,t+1|by,i,t; t] +

a

c

∑
j ̸=i

gij(sy)E [ky,j,t|i, t]−
1

cρ
. (106)

We rewrite (106) in terms of j. Under the assumption that all agents observe the realization

of by,t and that each individual i’s conditional expectations of (bo,j,t+1; by,j,t+1), j ̸= i, satisfy

E [bo,j,t+1|i, t] = E [bo,j,t+1|j, t], ∀i, j.

By using (106) to substitute into the rhs of (105) we obtain (50) in the main text, where

each component of the vectors of conditional expectations is given by:

E [by,i,t+1|t] = E [by,i,t+1|by,i,t], E [bo,i,t+1|t] = E [bo,i,t+1|by,i,t].

(51) is derived in the same manner. These conditional expectations may be written in terms

of the parameters (bm,Σ) of the Bt, the vector form of Bi,t. This is a stochastic linear system

that may be solved in closed form, as we see further below. The conditional expectations

are written, in the standard fashion, as:

E [by,i,t+1|by,i,t] = my+,i+ρb
σb+
σb

(by,i,t−my,i), E [bo,i,t+1|by,i,t] = mo,i+ρo
σo
σb

(by,i,t−my,i). (107)

We can therefore use (107) in (105) to rewrite the resulting system equations as in (52)

of the main text. The version of the system equations (52) is in the standard form for

stochastic dynamical systems. The state has two components, (ky,t,by,t), the first of which

is predetermined and the second is random and realized at time t. By relying on the tools of

linear stochastic systems we can express the steady state distribution of human capitals (and

of all other endogenous variables of interest) in terms of the parameters of the stochastic

process of shocks By,t. These results are microfounded within a model of intergenerational

transfers.
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Specifically, we may transform system (52) in terms of deviations of human capitals from

their deterministic steady state values, given by:

k∗
y =

a2

c2
G(sy)G(so)k

∗
y +C(so,bm,Σ). (108)

By Proposition 4.1 of Bertsekas (1995), ∆ky,t = ky,t − k∗
y has a multivariate normal limit

distribution with mean 0 and variance covariance matrix Σ∞ that satisfies:

Σ∞ =
a4

c4
G(sy)G(so)Σ∞G(so)G(sy) +Gadj(so)ΣbG

T
adj(so). (109)

where Σb denotes the variance covariance matrix of by. Q.E.D.

8.11 Proposition 12. Proof

An individual born at t takes cognitive skills and human capital as given, (by,i,t, ky,i,t), and

benefits from the networking efforts of the parents’ generation, so,t−1, who are in the third

subperiod of their lives when she is born. She chooses at time t the second subperiod hu-

man capital and the first subperiod transfer received by the child at time t+ 2, respectively

{ko,i,t+1, ky,i,t+2}; and the first and second subperiod networking efforts, {sy,i,t,, so,i,t+1}, re-

spectively. These benefit herself in the second subperiod of her life, and benefit her child

too, when the child is in her first subperiod of her life and she herself in her third subperiod

of her life. For analytical convenience, I assume that the adjustment costs for decisions

{sy,i,t,, ko,i,t+1}, are both incurred in period t. The optimization problem implies that the

cognitive skills, by,i,t+2, of the individual’s child and the transfer she receives when she be-

comes an adult, ky,i,t+2, are determined simultaneously. The definition of the value function

for the problem now changes to:

V [t](ky,i,t, so,t−1) = max
{ko,i,t+1,ky,i,t+2;ιc1,t,ιc2,t+1;sy,i,t,,so,i,t+1}

{
ρ2V [t+2](ky,i,t+2, so,t+1)

+by,i,tky,i,t + a
∑
j ̸=i

gij(so,t−1)ky,i,tko,j,t −
1

2
ck2y,i,t −

1

2
s2y,i,t − ko,i,t+1 − ιc1,t −

1

2
γ1ι

2
c1,t+

ρ

bo,i,t+1ko,i,t+1 + a
∑
j ̸=i

gij(sy,t)ko,i,t+1ky,j,t −
1

2
ck2o,i,t+1 −

1

2
s2o,i,t+1 − ky,i,t+2 − ιc1,t+1 −

1

2
γ1ι

2
c1,t+1

 .
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The first order conditions for ι1,t, ι2,t+1 are:

−1− γ1ιc1,t + ρ2
∂V [t+2](ky,i,t+2, so,t+1)

∂by,i,t+2

[
∂by,i,t+2

∂ιc1,t
+
∂bo,i,t+3

∂ιc1,t

]
= 0.

−ρ[1− γ2ιc2,t+1] + ρ2
∂V [t+2](ky,i,t+2, so,t+1)

∂by,i,t+2

[
∂by,i,t+2

∂ιc2,t+1

+
∂bo,i,t+3

∂ιc2,t+1

]
= 0.

Using the envelope property we rewrite the partial derivation of the value function above

and get:

−1− γ1ι1,t + ρ2β1 [ky,i,t+2 + ρko,i,t+3] = 0.

−1− γ2ι2,t+1 + ρβ2 [ky,i,t+2 + ρko,i,t+3] = 0.

Solving for ι1,t, ι2,t+1 yields:

ι1,t =
1

γ1
(ρ2β1[ky,i,t+2 + ρko,i,t+3]− 1); ι2,t+1 =

1

γ2
(ρβ2[ky,i,t+2 + ρko,i,t+3]− 1).

This in turn yields condition (60) in the main text:

by,i,t+2 = bo,i,t+3 = β0by,i,t + ρρβ[ky,i,t+2 + ρko,i,t+3]− ρβ, (110)

where the auxiliary parameter ρβ is defined as ρβ ≡
(
ρβ1
γ1

+ β2
γ2

)
. For some of the analysis

below we assume that by,i,t is constant, so that cognitive skills do not necessarily steadily

increase. Of course, such a figure could be incorporated.

It follows that the first-order condition for ky,i,t+2 must reflect the influence that decision

has, as implied by the optimization problem, on by,i,t+2. Since by,i,t+2 = bo,i,t+3 the utility

per period from the last two subperiods of the child’s lifetime contribute to the first-order

conditions. The first order conditions are:

−ρ+ ρ2
∂V [t+2](ky,i,t+2, so,t+1)

∂ky,i,t+2

+ ρ2
∂V [t+2](ky,i,t+2, so,t+1)

∂by,i,t+2

∂by,i,t+2

∂ky,i,t+2

= 0.

After using the envelope property and (110), this yields the following:

−1 + ρ

by,i,t+2 + a
∑
j ̸=i

gij(so,t+1)ko,j,t+2 − cky,i,t+2

+ ρ2ρβky,i,t+2 + ρ3ρβko,i,t+3 = 0.

This condition is rewritten as:

ky,i,t+2 =
1

ccs
by,i,t+2 +

a

ccs

∑
j ̸=i

gij(so,t+1)ko,j,t+2 +
ρ2

ccs
ρβko,i,t+3 −

1

ρccs
, (111)
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where the auxiliary variable ccs is defined as: ccs ≡ c− ρρβ. This condition may be rewritten

by using (110) to eliminate by,i,t+2 by expressing it in terms of (ky,i,t+2, ko,i,t+3).

In addition, the first-order conditions for ko,i,t+1, sy,i,t,, so,i,t+1 are as follows:

ko,i,t+1 =
1

c
bo,i,t+1 +

a

c

∑
j ̸=i

gij(sy,t)ky,j,t −
1

cρ
. (112)

sy,i,t = ρako,i,t+1

I∑
j=1,j ̸=i

∂gij(sy,t)

∂sy,i,t
ky,j,t; (113)

so,i,t+1 = ρaky,i,t+1

I∑
j=1,j ̸=i

∂gij(so,t+1)

∂so,i,t+1

ko,j,t+1. (114)

Conditions (113) and (114) are similar, respectively, to (40) and (41) and thus may be

manipulated at the steady state in like manner to the steady state analysis in section 5.1.4

above. It is more convenient to write Eq. (112) by advancing the time subscript as follows:

ko,i,t+3 =
1

c
bo,i,t+3 +

a

c

∑
j ̸=i

gij(sy,t+2)ky,j,t+2 −
1

cρ
. (115)

By using (60) to write for bo,i,t+3 in terms of its solution in terms of (ky,i,t+2, ko,i,t+3) and

rewriting the conditions for (ky,i,t+2, ko,i,t+3) in matrix form, we have:

ko,t+3 =
β0
ρ∗c

b− ρβ
ρ∗

i+

[
ρρβ
ρ∗c

I+
a

ρ∗c
G(sy,t+2)

]
ky,t+2, (116)

where ρ∗ ≡ 1− ρ2ρβ
c
.

ky,t+2 =
β0
ρ̃ccs

b− 1

ρ̃ρccs
i+

a

ρ̃ccs
G(so,t+2)ko,t+2 +

ρ2ρβ
ccs

ko,t+3, (117)

where ρ̃ ≡ 1 − ρρβ
ccs
. However, by substituting from (116) for ko,t+3 in the rhs of (117), we

have: [(
1−

ρ3ρ2β
ρ∗ρ̃cccs

)
I− aρ2ρβ

ρ∗ρ̃cccs
G(sy,t+2)

]
ky,t+2

= β0

[
ρ2ρβ
ρ̃ρ∗cccs

+
1

ρ̃ccs

]
b−

[
1

ρ̃ρccs
+

ρ2ρ2β
ρ̃ρ∗ccs

]
i+

a

ρ̃ccs
G(so,t+2)ko,t+2.

By dividing through by 1− ρ3ρ2β
ρ∗ρ̃cccs

and denoting

â ≡ aρ2ρβ
ρ∗ρ̃ccs

(
1−

ρ3ρ2β
ρ∗ρ̃cccs

)−1

,
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we may solve the previous equation with respect to ky,t+2 as follows:

ky,t+2 =

[
I− â

c
G(sy,t+2)

]−1 [
b′
eff +

a

ρ̃ccs
G(so,t+2)ko,t+2

]
,

where b′
eff is the resulting new constant. By substituting into the rhs of (116), we obtain a

single first-order linear difference system in ko,t+2:

ko,t+3 = beff +
a

ρ∗c
G(sy,t+2)

[
I− â

c
G(sy,t+2)

]−1
a

ρ̃ccs
G(so,t+2)ko,t+2, (118)

where beff denotes the resulting constant. Thus, this equation depends on both networking

efforts by the young and the old in two successive periods, G(sy,t+2),G(so,t+2).

In a notable difference from the previous model, we now see a key new role for the social

networking that individuals avail of when young. The product G(sy,t+2)G(so,t+2) is adjusted

by
[
I− â

c
G(sy,t+2)

]−1
. Intuitively, this effect acts to reinforce the effects of social networking

when young. This readily follows from (116) and (116) above. Feedbacks are generated due

to the investment in cognitive skills. Mathematical results invoked upon earlier can still be

used to determine the stability of (118). That is,
[
I− â

c
G(sy,2)

]−1
admits a simple expression,

following steps similar to those employed above, provided that the maximal eigenvalue of

â
c
G(sy,2) is less than 1, that is:

â

c

x2(sy,2)

x(sy,2)
< 1.

Thus: [
I− â

c
G(sy,2)

]−1

= I+
â

c

x(sy,2)

x(sy,2)− â
c
x2(sy,2)

G(sy,2).

Thus, the stability of (118) rests on the spectral properties of

a

ρ∗c

a

ρ̃ccs
G(sy,2)G(so,2) +

a

ρ∗c

â

c

a

ρ̃ccs

x(sy,2)

x(sy,2)− â
c
x2(sy,2)

G(sy,2)
2G(so,2).

By Theorem 1, Merikoski and Kumar (2004), 151–152, the maximal eigenvalue of the sum

of two real symmetric (Hermitian) matrices is bounded upwards by the sum of the maximal

eigenvalues of the respective matrices. Thus, a condition for the stability of (118) readily

follows and involves (sy,2, so,2) along with the other parameters of the model. Q.E.D.
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