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Abstract

Technological innovation can raise the returns to some skills while making

others less valuable or even obsolete. We study the effects of such skill-

altering technological change in the context of men’s professional tennis,

which was unexpectedly transformed by the invention of composite racquets

during the late 1970s. We explore the consequences of this innovation on

player productivity, entry, and exit. We find that young players benefited at

the expense of older players and that the disruptive effects of the new racquets

persisted over two to four generations.
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1 Introduction

The last two centuries have witnessed an enormous amount of technological in-
novation, and this is widely viewed as the primary source of long-run economic
growth and improvements in well-being. At the same time, at least since Ricardo,
economists have recognized that innovation can also be disruptive. As Acemoglu
(2002) vividly states, “in nineteenth-century Britain, skilled artisans destroyed weav-
ing, spinning, and threshing machines during the Luddite and Captain Swing riots,
in the belief that the new machines would make their skills redundant. They were
right: the artisan shop was replaced by the factory and later by interchangeable parts
and the assembly line.” New technologies disrupt the labor market when they raise
the returns to some skills while making others less valuable or obsolete.

We develop a theory, inspired by MacDonald and Weisbach (2004), of this
phenomenon, which we call skill-altering technical change. Our theory emphasizes
that workers endogenously invest in a portfolio of skills over their life cycle. We
show that new technologies that change the relative values of skills can hurt older
workers, who have spent a lifetime investing in the old, ideal skill mix, and better
workers, who, by definition, possess more of the skills that were previously more
valuable. We find that, depending on the elasticity of demand for workers’ output,
the effect of a new technology can either increase or decrease exit rates and cross-
sectional inequality. Moreover, the specter of future, skill-altering change makes
current human capital investment risky, especially investment in specialized skills.

To test our model’s predictions empirically and quantify the effects of skill-
altering technical change, we exploit the introduction of composite racquets in men’s
professional tennis during the late 1970s and early 1980s. These new racquets
drastically changed the way the game was played, increasing the importance of
hitting with spin and power relative to control. There are four reasons this episode
in men’s professional tennis is a useful setting to study the effects of skill-altering
technological change on workers. First, we have detailed panel data on multiple
cohorts of individual workers (players), allowing us to track the impacts of skill-
altering change over multiple generations of workers. Such data is difficult to obtain
in most settings. Second, the new technology arrived suddenly and unexpectedly and
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was adopted universally within a few years. This is valuable because the timing of
the innovation is obvious, the speed of the transition reduces the concern that other
economic shocks are driving the results, and this particular innovation was specific to
tennis, thereby minimizing concerns about general equilibrium effects. Third, tennis
careers are short—six years on average and rarely more than fifteen years—which
allows us to follow multiple cohorts of players over their entire careers. Another
advantage of short careers is that it further reduces the concern that other economic
shocks are driving the results. Fourth, since we can observe the performance of a
player without worrying about the effects of teammates, professional tennis offers
unusually clean measures of worker productivity.

We find that the introduction of the new composite racquets substantially dis-
rupted the tour, with repercussions lasting for between two and four generations. It
temporarily reduced the rank correlation in player quality over time, helped younger
players at the expense of older ones, reduced the average age of tennis players, and
increased exit rates of older players relative to younger ones. We find that inter-
generational inequality rose, though we find mixed evidence for the new racquets’
effects on cross-sectional inequality. We also consider competing explanations, but
we conclude that they cannot explain many of the other patterns we find. Moreover,
when we compare the ages of tennis players with other Olympic athletes, we do not
find a similar drop in the ages of Olympic athletes during the same time period.

While tennis provides an ideal setting for documenting skill-altering technical
change, the phenomenon extends far beyond tennis. Consider the case of farmers
during the mid-twentieth century. It is difficult to overstate the effect of the rise of
tractors on the nature of farming. While tractors made all farmers more productive,
they also had subtler effects on optimal farming practices. With a tractor, the
traditional approach to farming, which relied on work animals, gave way to new
farming techniques that relied on machines. Thus, farmers who had spent a lifetime
investing in animal husbandry skills saw the value of their skills eroded by the
arrival of tractors. As another example, consider the development of computer-aided
drafting in architecture during the 1980s, discussed in MacDonald and Weisbach
(2004). This new software devalued drafting and engineering skills relative to artistic
skills when designing new buildings. Older architects found the transition difficult,
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with the New York Times reporting that “as young architects plunge into the high-tech
tide, older colleagues wade in gingerly.”1 In both examples, the new technology
altered the relative value of different skills in an occupation. Consistent with skill-
altering technical change, Figure 1 shows that the average age in those occupations
fell temporarily relative to the general population just after the new technology
arrived.

This paper contributes to the literature on skills and technological change, and
to the more recent literature on the effects of labor demand shocks on workers. A
large literature has explored the evidence and consequences of skill-biased technical
change (SBTC), which Autor et al. (2008) define as “any introduction of a new
technology . . . that increases the demand for more-skilled labor relative to less-
skilled labor at fixed relative wages.” In contrast, the phenomenon we identify—
skill-altering technical change—is the introduction of a technology that raises the
demand for, or productivity of, one skill relative to another at fixed implicit (skill-
specific) wages. Whereas models of SBTC make predictions about wage differences
between, for example, college and non-college educated workers, our model of skill-
altering change primarily makes predictions about wage differences between more-
and less-experienced workers. Furthermore, because skill-altering technical change
focuses on differential effects of technical change over the life cycle, it allows us to
address intergenerational inequality and exit decisions. This allows us to address a
puzzle Card and DiNardo (2002) identify; “SBTC also fails to explain . . . the age
gradient in the return to education” which we explain as resulting from a change in
which skills are valued rather than a change in the general value of skill. Moreover,
while the prospect of future SBTC raises returns to human capital investment, the
prospect of future skill-altering change discourages human capital investment. Thus,
while skill-biased and skill-altering change are not mutually exclusive phenomenon,
they are conceptually distinct and offer distinct empirical predictions.

We build most closely on four papers that measure how the introduction of
technology affects workers. Akerman et al. (2015) use the exogenous roll-out of
broadband internet in Norway, Gaggl and Wright (2017) use variation induced by

1Dunlap, David. “Computer design: Castles, and planetariums, in the air.” New York Times. 11
March 1999.
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Figure 1: The rise of tractors and the arrival of architectural software

Source: United States Current Population Survey (Flood et al., 2017), United States Census, and
American Community Survey (Ruggles et al., 2018)
Notes: Data on farmers come from the Census through 2000 and the five-year ACS (2008-2012) for
2010. Data on architects come from the March CPS prior to 1976, and from the basic monthly CPS
thereafter. Samples restricted to ages 18–64. Tractors per farm rose from only 1 in 26 in 1920 to
nearly 1 to 1 in 1955 (see Table 2 of Binswanger (1986)). We date the arrival of architectural
software to 1976. The first computer-aided drafting programs were developed in the early 1960s, but
were not used widely until much later. As late as 1977, firms could claim to be among the first in
their state to be using computer-aided design (Zahler, Miriam. “Architects turn to computers for
drafting and design work.” Crain’s Detroit Business. 13 October 1986).
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an unexpected U.K. tax credit for small firms which invested in information and
communication technology, Hanssen (2020) uses the transition to sound motion
pictures, and Horton and Tambe (2020) use the transition away from Flash. We also
build on Gannaway et al. (2014), who investigate the effects of a new technology
in professional sports—the three-point line in NBA basketball. We build on these
papers by introducing a model of skill-altering technological change and using panel
data to trace its effects on workers over time, and examining how the effects differ
based on worker experience.

The structure of the paper is as follows. We explain the nature of the technological
shock in men’s tennis in Section 2, and introduce our model in Section 3. In Section
4 we use this model to understand how players are affected by the introduction of a
skill-altering technology. We introduce our data in Section 5 and describe how we
estimate player quality using this data in Section 6. We test the predictions of the
model in Section 7 and discuss our results and limitations in Section 8. Section 9
concludes.

2 Background

Until the mid-1970s, tennis racquets were made nearly exclusively of wood, and this
technology had been stable for decades. Although alternative materials were tried,
such as the steel Wilson T-2000, which a few players used, most players continued
to play with wood racquets. Then a retired engineer, Howard Head, started playing
tennis and discovered he was terrible at the game. He decided that the fault lay with
his racquet, and in 1976, he took it upon himself to invent a new one, the Prince
Classic. “With. . . my racket I was inventing not to just make money, but to help
me.”2 Although initial reactions to Head’s new racquet were laughter and scorn, the
racquet had much to offer recreational players.3 The Prince Classic had a larger
string bed and sweet spot that made it easier for players to make good contact with
the ball and generate more power and spin, but it achieved these gains at the expense

2Carlson, Bernie. “Howard Head And The Prince Tennis Racket: A Journey From The Personal
To The Democratic.” Forbes. 1 December 2017.

3Fisher, Marshall Jon. “The Feel of Wood.” The Atlantic. July 1995.
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of stiffness and control, making the racquet unacceptable for professional players.
Racquet makers quickly found a solution; they developed methods for constructing
the racquet frame out of a composite material consisting of a mixture of carbon
fibers and resin. Composite frames allowed both a larger string bed and a stiff
frame, giving players more power and control. The first composite racquet that
professionals used, the Prince Pro, hit the market in 1978, and composite racquets
quickly replaced wood ones as professional players found that their familiar wood
racquets were no match for the combination of power and control afforded by the
new composite racquets.

Figure 2 illustrates this transition by reporting the racquets used to win each of
the four Grand Slam tournaments over time.4 During 1981, Brian Teacher became
the first player to win a Grand Slam using a composite racquet when he won the
Australian Open using the ProKennex Black Ace. Just two years later at Roland-
Garros, Yannick Noah became the last player to win a Grand Slam using a wood
racquet. But at that point, even Noah’s wood racquet had an oversized frame with
graphite inlays added to increase stiffness. By 1983 the share of wood racquets
accounted for only 25 percent of the high-priced racquet market,5 and by 1984,
composite racquets had taken over the tour.

The introduction of composite racquets significantly changed the way men’s
professional tennis was played. When tennis players strike the ball, they often try to
impart topspin, which causes the ball to rise over the net and then dip downward,
helping it stay in the court. Moreover, a ball hit with topspin “jumps” off the court,
making it more difficult for an opponent to return. All else equal, the more topspin
a player can impart, the harder he can hit the ball and still keep it in play, and
the more difficult it is for an opponent to return the ball. Wood racquets allowed
players to only impart a modest amount of topspin, which limited the speed with
which they could hit the ball. Composite racquets greatly increased the amount of
topspin a player could impart, allowing players to hit more powerful and penetrating
shots. Physicist Rod Cross (2006) provides a numerical example to illustrate why

4Figure 2 represents the most comprehensive data we could find on racquets used by individual
players.

5Armstrong, Scott. “Technology Tugs at Tennis Traditions.” Christian Science Monitor. 6
September 1983.
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Figure 2: Racquet type used to win each Grand Slam over time

Source: Les Raquettes de Legende (2012)
Notes: Other racquet types include a variety of metal racquets, such as Jimmy Connors’ steel Wilson
T-2000. Prior to 1984, these other racquets were more similar to wood ones. In 1987, Pat Cash won
Wimbledon with a Prince Magnesium Pro 90, which, although technically a metal racquet, was much
more similar to other composite racquets.

composite racquets had such a large effect on how the game is played.

When a ball bounces off the court it acquires topspin, even if it had no
spin before it hit the court. In fact, it spins faster than most players can
generate themselves when they hit a topspin return. In order to return
the ball with topspin, a player needs to swing the racquet both forwards
and upwards and fast enough to reverse the rotation of the spinning ball.
. . .

Suppose, for example, that the ball spins at 3,000 rpm (50 revolu-
tions/sec) after it bounces off the court. That is a typical amount of spin
when a ball hits the court at around 30 or 40 mph. Returned with a wood
racquet, a player won’t be able to swing up at a very steep angle without
clipping the frame. He will still be able to reverse the spin, but he will
get only 200 rpm or so of topspin by swinging the racquet upward fairly
rapidly at about 20 degrees to the horizontal. A change in spin from
3,000 rpm backwards to 200 rpm forwards is a change of 3,200 rpm,
which is a relatively big change, but it is only enough to return the ball
with a small amount of topspin.

Now suppose the player switches to a 10-inch-wide racquet and swings
up at 30 degrees to the ball. The player can do that and can also tilt
the racquet head forward by about 5 degrees, with even less risk of
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clipping the frame than with a 9-inch-wide wood racquet being swung
at 20 degrees with the head perpendicular to the ground. In this way,
the player will be able to change the spin by about 4,000 rpm instead
of 3,200 rpm, with the result that the spin changes from 3,000 rpm of
backspin to 1,000 rpm of topspin. The result is therefore a factor of five
increase, from 200 rpm to 1,000 rpm, in the amount of topspin.

Although composite racquets allow players to generate much more topspin and
power, taking full advantage of this potential required significant changes to players’
strokes and play style. Older players in particular, who had invested years in learning
to play with a wood racquet, faced the daunting challenge of adjusting to composite
racquets. Players began altering their stances and swings to generate more topspin
and power. They rotated their grips to generate more spin and help them return
balls that were bouncing higher because of the increased topspin of their opponents.
These seemingly subtle changes in technique and strategy resulted in a much more
physical and faster-paced game. As Cross observed,

The modern game of tennis is played at a furious pace compared with
the old days when everyone used wood racquets. Just watch old film
from the 1950s and you will see that the game is vastly different. Ken
Rosewall and Lew Hoad barely broke into a sweat. Today’s game has
players grunting and screaming on every shot, calling for the towel every
third shot, and launching themselves off the court with the ferocity of
their strokes.

3 Model

To guide our empirical analysis, we develop a model of skill-altering technological
change. Since our theoretical results are intuitive, we give an overview of the
model here and relegate details of the model to Appendix A. The model is a simple
overlapping generations model in the spirit of MacDonald and Weisbach (2004).
Each cohort consists of a mass one of players, each of whom live for three periods.
We index periods with t and a player’s age with a. A player’s performance at age a
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depends both on his skills and the current racquet technology. Let {xia,yia} denote
player i’s skills at age a (these skills can be thought of as representing control and
power/spin). Racquet technology r consists of the pair (Ar,λr), and a player’s quality
qiar using racquet technology r is:

qiar = Arx
λr
ia y1−λr

ia

so that
logqiar = logAr +λr logxia +(1−λr) logyia.

Changes to parameters Ar and λr affect players differently. Parameter λr ∈ (0,1)
controls the relative importance of skill x when using that racquet. A technology
shock that decreases (increases) λr helps players who have relatively more (less) of
skill y, while an increase in Ar increases quality for every player.6

Players’ skills evolve over time in response to players’ choices of which skills
they invest in. Players are identical at birth.7 During every period, each player selects
the optimal technology for his skill composition and chooses how much to invest
in each skill, subject to a budget constraint that depends on his age and a random
shock. We assume that a player’s quality, in expectation, grows over his career and
is concave. Heterogeneity in player quality arises over time since those who receive
favorable shocks end up with greater quality than those who do not.

A player’s earnings depend on his quality and the market price for quality, which
is a weakly decreasing function of the total quality of active players. If a player
chooses not to play, he earns a wage w0 and cannot rejoin the tour in the future.

Each period unfolds in the following order:

1. Players decide whether to play. Once he decides not to play, a player may not
rejoin the tour later.

2. Players decide which racquet technology to use.

3. Players choose how to invest in their skills.
6However, player performance is zero-sum—every win for one player corresponds to a loss for

another—and under the assumptions we make in Section 6, an increase in Ar for all players does not
affect the probability that one player defeats another.

7See Appendix Section C for a discussion about allowing heterogeneous initial skills.
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4. Players receive their wage if playing or the outside option w0 if not playing.

Players choose whether to play, which technology to use, and how to invest in their
skills to maximize their expected lifetime earnings.

4 Effect of introducing a new racquet technology

We use our model to understand how players are affected by the skill-altering
technical change induced by the introduction of composite racquets. For notational
simplicity, we drop the r subscript and denote variables related to the new racquet
(i.e., the composite racquet) using a prime (i.e. λ ′ vs λ ). Without loss of generality,
we assume λ > .5. We model the introduction of composite racquets as a new
technology with A′ > A, so that the racquet is better overall, and λ ′ < λ , so that it
shifts weight away from x, the previously technologically-favored skill. We assume
A′ is sufficiently larger than A such that all players switch in the same period.8 The
model offers three predictions to take to the data. We begin by characterizing how
the new racquet changes player quality.

Lemma 1. Switching to a new racquet induces a one-time change in a player’s log

quality of uia, where

uia = logA′− logA+
(
λ
′−λ

)
(logxi,a−1− logyi,a−1) . (1)

Lemma 1 shows that the magnitude of the change in player quality, uia, depends
on the nature of the technological shock, with the magnitude increasing in both
A′−A and |λ ′−λ |. This change varies across players and depends on a player’s mix
of skills x and y. A player with relatively more of the skill on which the new racquet
puts additional weight, so logxi,a−1− logyi,a−1 is relatively small, experiences a

8As discussed in Section 2, the actual shift occured over a few years. Relaxing the assumption
that A′ is sufficiently larger than A so that all players switch does not change the results, as it simply
truncates the distribution of changes in player quality (the soon-to-be-defined uit ) at zero. Thus, the
magnitude of changes would be different, but which players are helped and hurt, and the consequences
of this, are not.
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larger uia and sees his quality relative to other players increase. Likewise, a player
with relatively less of this skill experiences a smaller uia and sees his relative quality
fall.9

4.1 Shock hurts better players

Since players targeted their prior investments to the mix of skills that was optimal for
the old racquet, the new racquet helps lower quality players, who have not invested
as much (either due to being younger or receiving smaller random shocks), more
than it helps better players who have. The following proposition demonstrates this
formally.

Proposition 1 (Shock hurts better players). If player i was better than player j in

the prior period
(
i.e., qi,ai(t−1) > q j,a j(t−1)

)
then a technological shock that shifts

weight away from the favored skill reduces the quality of player i relative to that of

player j
(
i.e., uiai(t) < u ja j(t)

)
.

Because the technological shock hurts better players, it leads to a “reshuffling”
of which players are good and which are not. Thus, a directly testable corollary to
Proposition 1 is that the technological shock reduces the probability that a player
who was better than another in the last period continues to be better, thereby reducing
the period-to-period rank correlation of player quality.

Corollary 1 (Rank correlation falls). A technological shock that shifts weight away

from the favored skill temporarily reduces the rank correlation, as measured by

Kendall’s τ , in player quality over time.

4.2 Younger players gain relative to older players

The technological shock, on average, benefits younger players at the expense of
older players. It helps younger players because they have not spent their periods
of skill acquisition acquiring the “wrong” mix of skills. Figure 3 illustrates the

9For players to want to switch, it must be that switching improves their quality, so uia ≥ 0. This is
the case if, for instance, A′ is sufficiently larger than A.
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Figure 3: Change in quality trajectory when composite racquet technology arrives

Notes: “Young” players are in their first period when the new racquet arrives. “Middle-aged” and
“old” players are in periods two and three of their careers when the new racquet arrives. The quality
trajectories are shown with all shocks set to zero, so αa is the (expected) increase in quality at age a
and uit is the change in quality due to the new racquet.

evolution of player quality over time and how the effect of the new racquet varies
by player age, where αa denotes the expected increase in quality at age a. Player
quality climbs over time, but when the new racquet arrives it helps those who begin
their careers immediately after its arrival much more than it helps older players. This
gives younger players a relative advantage over more experienced peers and they
generally perform better than expected for their age. We formally show this in the
following proposition.

Proposition 2 (Shock hurts older players on average). Suppose player i is older than

player j when the new technology arrives, and that we were in a steady state before
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the new technology. Then a technological shock in period t that shifts weight away

from the favored skill more likely than not reduces the quality of player i relative to

the quality of player j. That is, P
[
uiai(t) < u ja j(t)

]
> .5.

Corollary 2 (Intergenerational inequality increases). A technological shock that

shifts weight away from the favored skill increases inequality between those who

were old and those who were young at the time of the shock.

Corollary 2 extends the logic of Proposition 2 to player cohorts. A skill-altering
technical change increases intergenerational inequality by harming older players
while helping younger players. Older players who invested for years in the hope
of working their way to the top of the profession find that their investments are not
worth as much, while younger players discover that they can compete at the top of
the profession from the start of their career.

4.3 Exit rates

Since older players have been hurt relative to younger ones, it seems reasonable
to conjecture that older players retire sooner while younger players exit less often.
However, the new technology has an ambiguous effect on exit rates. To see why the
effect on exit rates is ambiguous, consider an old player who is on the margin of
exiting at the time of the technological shock. If the demand curve for his output is
perfectly elastic, such that the price he receives per unit of quality is unchanged by
the new technology, then his earnings are higher,10 and he now strictly prefers to
continue playing tennis. Thus, the exit rate for old players decreases. Now consider
another extreme scenario in which demand is not perfectly elastic but λ = 1 and
λ ′ = 0. That is, the technological shock completely devalues all investments the
older player made and his quality is now equal to that of the youngest players. Hence,
his expected earnings that period are the same as that of a young player. However,
a young player is willing to earn less than w0 because he expects his quality and
earnings to grow in the future. Thus, the old player expects to earn less than w0

and strictly prefers to exit instead. The following proposition states this ambiguity
formally.

10His earnings are higher since his own quality has risen.
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Proposition 3 (Ambiguous effects on exit rates). A technological shock that shifts

weight away from the favored skill can either increase or decrease the exit rate of

older players.

4.4 Cross-sectional inequality

Finally, skill-altering technical change has an ambiguous effect on cross-sectional
inequality. By Proposition 1, the shock hurts better players relative to worse ones,
implying that, holding fixed the set of players, the technological shock decreases
cross-sectional inequality. However, the introduction of the composite racket also
affects entry and exit decisions. If the new technology increases the entry rate
of young players and the exit rate of older players, it might hollow out the skill
distribution, thereby increasing cross-sectional inequality. Thus, a skill-altering
technical change has an ambiguous effect on cross-sectional inequality.

4.5 Summary

In summary, this simple model of skill-altering change guides us when measuring the
effect of the introduction of composite racquets on four outcomes in the data. First,
the model predicts the new racquets will temporarily reduce the rank correlation
in player quality over time. Second, the model predicts the new racquets will help
younger players relative to older ones. Third, although it appears intuitive that the
arrival of composite racquets would cause older players to retire at higher rates, the
theoretical effect is ambiguous, leaving the effect of composite racquets on exit an
empirical question. Finally, the model makes an ambiguous prediction about the
effect of the new technology on cross-sectional inequality. We test these predictions
using data on the universe of men’s professional tennis matches.

5 Data

To test our theoretical predictions of the effect of a skill-altering technical change on
players, we obtained data on all men’s professional tennis matches played between
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1968 and 2014.11 The data were provided by the ATP World Tour, the governing body
of men’s professional tennis. For each match, we observe the winner and loser of the
match and the score. The data also contains background information about players
such as date of birth. Although the data contains information about tournament
prize money, this data is incomplete prior to 1990. We use data from all main draw
matches at Grand Slams, regular Tour events, Davis Cup, and the Challenger tour.12

All these events award ATP ranking points, which determine a player’s official
ranking, and therefore eligibility for, and seeding in, future tournaments.13

We only include players who appear in the strongly connected component (SCC)
for that year, essentially limiting analysis to those who both won and lost at least
one match during a calendar year.14,15 Although the SCC could be quite small in
principle, in practice it contains the majority of players in the data and the vast
majority of matches.16 Defining active players as those in the strongly connected
component has the practical effect of eliminating players who compete in a very
small number of matches—on average, just 1.6 matches. These are typically young

11Women’s professional tennis is governed by the Women’s Tennis Association (WTA) which is
independent of the ATP. Although the ATP and WTA are comparable in size and popularity today,
during the 1970s the WTA was significantly smaller than the ATP. Therefore, we focus on men’s
professional tennis.

12We exclude qualifying rounds because we do not have data on them prior to 2007. We also
exclude matches from the International Tennis Federation’s Satellite and Futures tournaments because
of incomplete data; these events are the lowest level of events which award ATP ranking points (i.e.,
they award the fewest number of ranking points and the least amount of prize money).

13“What is the Emirates ATP Rankings?” ATP World Tour, accessed 26 September 2016,
http://www.atpworldtour.com/en/rankings/rankings-faq.

14More precisely, think of all the players in the data as points in a directed graph. Player i is
connected to player j by a (directed) edge if i defeated j and vice versa. The SCC is the maximal
subgraph of this directed graph such that, for any two players i and j in the SCC, there exists a
directed path from i to j and from j to i.

15Table D.2 summarizes the win-loss records of excluded player-years, showing that 82% of
player-years are dropped due to having no wins. Only 1.7% of player-years excluded from the SCC
are dropped because they have no losses. These are due to instances where a player won a few
matches, or even a tournament, but did not compete in any other events for the remainder of the
year. This could happen if the player was injured, broke through on the tour at the end of the year, or
qualified for only a single tournament, which he won, but did not qualify for any more events that
year. For example, Wayne Arthurs played in only a single ATP tournament during 1997 due to an
elbow injury. He won the tournament and as a result of his perfect win-loss record, is not included in
the SCC for 1997.

16A match appears in the SCC only if both of its players are in the SCC.
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players who are actively competing in lower level (non-Tour) events in the hope of
becoming a regular competitor on the Tour, but who have not yet been able to make
more than one or two Tour appearances. Limiting analysis to the strongly connected
component reduces the number of player-years in the sample by 44 percent but
reduces the number of matches by only 9 percent. Figures 4a and 4b show the
number of matches and players in the SCC over time, Figure 4c shows how the
number of tournaments has grown. Figure 4d shows that, other than for 1968 and
1969, the fraction of data in the SCC is consistent over time. Given limited data for
1968 and 1969, we omit these years from our analysis.17
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Figure 4: Trends in tour size over time

Professional tennis players are typically between the ages of 18 and 35. Most

17Professional and amateur tennis officially merged in 1968, known today as the beginning of the
Open Era. However, the transition took a few years and was not complete until about 1970. This is
likely why the data is more limited prior to 1970.
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professionals begin their careers around age 20, and few careers last more than 15
years (see Figure 5). Shown in Table 1, the average career consists of about six
active years of play.
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Figure 5: Histogram of number of years active on the tour

Table 1: Career summary statistics

Mean Median Std. dev.

Age of entry 20.4
Number of years active 5
Career singles wins 29
Career singles matches 69

Observations 2541
Notes: These summary statistics are calculated only for years in which a player

appeared in the strongly connected component, but include all of their wins and
matches during those years, regardless of whether their opponents were in the
strongly connected component. The table is limited to players born between 1950
and 1985 so that we have had a chance to observe (nearly) all of their career.

Table 2 shows that the typical player plays only 26 matches per year, though this
variable has a large right tail. The tail arises because, unlike many other sports in
which teams play a fixed number of games during a season, tennis players compete
in a tournament format. The tournament format causes more successful players
to play many more matches than others during a year. To illustrate, consider a
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Table 2: Player-year summary statistics

Mean Median Std. dev.

Age 23.8
Annual singles wins 9
Annual singles matches 21

Observations 20275
Notes: These summary statistics are calculated only for player-years in the strongly

connected component, but include all of their wins and matches, regardless of
whether their opponents were in the strongly connected component.

tournament with 64 players. Half will lose in the first round and therefore play only
one match. At the other extreme, the winner and runner-up of the tournament will
each play 6 matches. Since the best players are invited to more tournaments, this
effect compounds during a year so that the best players play many more matches
than the typical player.

The tournament format also complicates the interpretation of statistics, such as
a player’s win rate. In sports with a fixed number of games per season, a team’s
win rate provides a reasonable measure of success. In this case, win rates average
50 percent by construction, making them a useful benchmark for distinguishing
winning and losing records. In tennis, the win rate is much more difficult to interpret.
Returning to the example of a 64 player tournament, half of the players have a win
rate of zero, one-quarter have a win rate of 50 percent, and so on, so that the average
win rate among all 64 players is 30.7 percent. Thus, in any tournament the average
tennis player has a “losing record,” and only the top quarter of players have win rates
in excess of 50 percent.

6 Estimating player quality

For estimation, we model player i’s performance in match m as

log q̂im = logqit +µim
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where qit is i’s quality in year t and µim is a type 1 extreme value match-specific
shock. Since a given match takes place during a specific year, we let the match
subscript absorb the time subscript. Player i wins a match against player j if, and
only if, he performs better in the match: q̂im > q̂ jm. Thus the probability that player
i defeats player j in a match played in year t is given by the familiar logit expression

P(i defeats j) = pi jt =
qit

qit +q jt
, (2)

and the likelihood of observing the data given these probabilities is:

L =
N

∏
i=1

N

∏
j=i+1

pwi jt
i jt (1− pi jt)

w jit

where wi jt is the number of times i is observed defeating j during year t. We use
data on match outcomes to estimate each player’s quality during each year, qit , by
choosing qit to maximize this likelihood.

Players do not compete against a random sample of opponents, both because
better players participate in more competitive tournaments and because as a player
advances in a tournament he competes against increasingly better opponents. Simply
calculating the fraction of matches won does not consider that players with more
matches tend to play those matches against better opponents. For example, consider
two players and two tournaments. Player A wins his first two matches at the first
tournament but loses in the third round. He then loses in the first round of the second
tournament, giving him a win rate of one-half. Player B makes it to the second
round of the first tournament but is not invited to the second tournament, giving him
the same win rate of one-half. Although A and B both won half of their matches,
A’s wins were against better opponents than B’s, and the conditional logit model
described above accounts for this when estimating their qualities. However, none of
our theoretical predictions rely on the conditional logit assumption; we assume this
to allow us to estimate player qualities from the data.

A player’s quality is identified only if he is in the strongly connected component,
which means he must have both won and lost to another player in the strongly
connected component. This is necessary because if a player never won a match,

20



then to maximize the likelihood, we need to set his probability of winning to zero
by setting his quality to 0. Likewise, if a player never lost a match, we need to set
his probability of winning to one by setting his quality to infinity. A logit model
cannot assign a finite (log) quality to these players, so we remove them. We iterate
this process until no more players are removed. We define the remaining players as
active and these are the players we use in our estimation.18

Our estimates of player quality within each year are only relative to other players
within that year, because the probability that one player defeats another is unchanged
if we add a constant to both players’ (log) qualities. Thus, we normalize the
estimates of (log) quality in a year to have a mean of zero, so the estimates must
always be interpreted relative to the “average” player that year. This implies that, by
construction, any trend in average quality has been removed.

7 Results

7.1 Returns to height rose

We have argued that composite racquets did not simply make all players better;
rather, they shifted the relative returns to different skills. To test this claim, we would
ideally use data on players’ latent skills along with their performance to estimate the
return to different skills in each year. Then we could observe whether those returns
changed when composite racquets were introduced. While we cannot observe a
player’s latent skills, such as control or power, we do have data on a player’s height
which should be positively correlated with his power. Height is a fixed characteristic
of players, so we do not need to be concerned about players endogenously adjusting
their heights due to the new technology.19

Figure 6 plots the regression coefficient from regressing a player’s (log) quality
on his height in each year. The dashed lines mark the years when professional
tennis players were transitioning to composite racquets. Prior to the introduction of

18This approach is essentially the same as that of Sorkin (2018).
19However, in the longer run there might be a response on the extensive margin as taller players

become more likely to enter the tour.
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the racquets, height appears to have conferred a disadvantage.20 After composite
racquets arrived, the returns to height reversed and taller players, who are better able
to exploit the power and spin the racquets offer, have had an advantage ever since.
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Figure 6: Relationship between estimated player (log) quality and height over time

Notes: The figure plots the regression coefficient from regressing a player’s (log) quality on his
height (in inches) in each year (circles) and a four-year lagged moving average (solid line). The
dashed lines mark the years during which professional tennis players were transitioning to composite
racquets. The figure reports the p-value of a t-test of whether the return to height before 1978
differed from the return between 1985 and 1999.

7.2 Year-to-year rank correlation of player quality fell temporar-
ily

The first prediction from our model is that the transition from wood to composite
racquets reduced the year-to-year rank correlation in player quality. Thus, we expect
the change in technology to lead to a reshuffling of players since the new technology
devalued better players’ skills. Figure 7 verifies that this prediction holds in the data.
For each year, we calculate the rank correlation (Kendall’s τ) between a player’s
estimated quality from one year to the next. As expectd, this correlation is positive—
players with better ranks in one year tend to have better ranks in the next. This

20Lack of topspin forced players to make contact with a ball that was relatively low to the ground,
which would have been more difficult for taller players.
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positive correlation rises over time, which may be due, in part, to increasing precision
in our estimates of player quality over time due to players competing in more matches
during later years. However, during the transition from wood to composite racquets,
the rank correlation fell sharply before recovering to trend around 1990. We fit a
regression to the data between 1970 and 1999 that allows for separate slopes and
intercepts for three periods: pre-1978, 1978–1984, and 1985–1999. We then test this
fit against a null hypothesis of a single slope and intercept over the entire period.
This is a simple test for nonlinearity associated with the racquet transition. We reject
the null hypothesis of a simple linear trend between 1970 and 1999 (p = .012).
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Figure 7: Year-to-year rank correlation of estimated player quality

Notes: This figure plots a measure of rank correlation (Kendall’s τ) between a player’s estimated
quality in consecutive years (circles). If a player did not appear in year t but did in year t−1 or t +1,
we imputed their quality to be below the minimum in year t. The solid line plots a four-year lagged
moving average. The vertical dashed lines mark the years of the racquet transition (1978–1984). The
reported p-value corresponds to an F-test for whether the pre-1978, 1978–1984, and 1985–1999
periods have the same slopes and intercepts.

7.3 Younger players gained relative to older players

Our model’s second prediction is that the transition from wood to composite racquets
should help younger players relative to older players. We test this in five ways.
First, as Figure 8 shows, the average age of the top 16 players at Grand Slam events
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fell after the introduction of composite racquets.21 The figure reports the p-value
from an F-test for whether the slopes and intercepts are the same for the pre-1978,
1978–1984, and 1985–1999 periods. The results suggest that right after composite
racquets arrived, there was a reduction in the age of players at the highest levels of
play. This reduction was not permanent; the average age in 2015 was as high or
higher than it was in the 1970s.22
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Figure 8: Average age in round of 16 of each Grand Slam over time

Notes: The figure plots the average age in the round of 16 for each Grand Slam (circles) and the
average of the last three years of tournaments (solid line). The vertical dashed lines mark the years of
the racquet transition (1978–1984). The p-value corresponds to an F-test for whether the pre-1978,
1978–1984, and 1985–1999 periods have the same slopes and intercepts.

Second, we show that the new racquets helped younger players relative to older
players by examining the number of appearances in the round of 16 of a Grand Slam
tournament by five-year birth cohort. In Figure 9, we plot the cumulative number of
appearances made by members of that cohort in the round of 16 of a Grand Slam
tournament. The 1950–1954 cohort were in the prime of their careers during the
1970s, before the new racquets arrived. The next cohort (1955–1959), however, was

21In men’s tennis, the four Grand Slam events are the Australian Open, Roland-Garros, Wimbledon,
and the U.S. Open.

22There is a steep rise in age after 2010, however it occurs many years after the transition period
we are assessing. The rise might be attributable to innovations in physical training and health that
allow players to extend their careers.
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between 21 and 25 years old in 1980, so they were in the prime of their careers
during the racquet transition. Compared to the prior cohort, the 1955–1959 cohort
accumulated far fewer appearances—about 200 appearances compared to about 350
for the 1950–1954 cohort. Moreover, while the 1955–1959 cohort begins normally,
their appearances reach an abrupt plateau right at the end of the transition period.
Subsequent generations performed increasingly better, culminating in the 1970-1974
cohort who were between 6 and 10 years old in 1980, so they were the first cohort to
learn to play tennis with the new racquets. As a result, they accumulated over 400
appearances, more than any cohort before or since.23 In Table 3, we calculate the
age at which each cohort reached different milestones, finding that the 1970–1974
cohort reached these milestones about two years before the typical cohort, while the
1955–1959 cohort reached 200 appearances nearly a decade late.

We do not observe prize money prior to 1990, so we put these effects in dollar
terms using data after 1990 to regress a cohort’s log prize money during year t on its
log number of round of 16 appearances during year t. We estimate an elasticity of
1.2, so a ten percent increase in a cohort’s round of 16 appearances correlates with
a 12 percent increase in prize money.24 Thus, the 1955–1959 cohort earned about
50 percent less career prize money than the prior cohort and more than 60 percent
less than the 1970–1974 cohort.25 By estimating cohort earnings, we capture both
lost prize money of those who exit and lower prize money for those who continue
playing.

Third, younger players’ increased their share of matches across the tour, and this
increase came at the expense of older players. As Figure 10 shows, players between
ages 18 and 21 double their share of matches from less than 20 percent during the
mid-1970s to over 30 percent by 1990. This increase came at the expense of older
players, ages 26 to 39, with the most severe reductions appearing among players over
30. Starting during the 1990s, younger players accounted for a diminishing share of

23It also appears that the next cohort, 1975–1979, was adversely affected by the dominance of the
1970–1974 cohort. It seems plausible that the dominant 1970–1974 cohort effectively locked the
following cohort out of opportunities on the tour.

24For full regression results, see Table D.3 in the appendix.
25These calculations do not incorporate non-prize earnings players might have received while

playing or after exiting the tour.
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Figure 9: Grand Slam performance by birth cohort

Notes: The figure plots the cumulative number of Grand Slam round of 16 appearances for each
five-year birth cohort.

Table 3: Age at which each birth cohort achieved a given number of round of 16
appearances in Grand Slams

Round of 16 Appearances
150 200 250 300

1950-54 26.8 28.1 29.6 31.3
1955-59 27.9 36.0 . .
1960-64 26.1 27.6 30.4 .
1965-69 25.1 26.6 28.6 30.8
1970-74 24.4 25.7 27.0 28.3
1975-79 27.8 30.5 . .
1980-84 25.2 26.8 28.3 29.9
1985-89 25.9 27.2 28.6 29.8
Median 26.0 27.4 29.1 31.1

Notes: For cohorts that never reached a given number of appearances, the cell is marked with a dash.
The last row reports the median of all eight cohorts, treating missing cells as infinite.
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matches, returning to less than 20 percent by 2015, while the share of older players
recovered, ultimately returning to its previous level. For young and old players, we
reject the hypothesis of a simple linear trend between 1970 and 1999.
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Figure 10: Share of matches by age group over time

Notes: The figure plots the share of matches by age group for each year (circles) and a four-year
lagged moving average (solid line). The vertical dashed lines mark the years of the racquet transition
(1978–1984). The p-value corresponds to an F-test for whether the pre-1978, 1978–1984, and
1985–1999 periods have the same slopes and intercepts.

The U-shaped (and inverted U-shaped) patterns suggest that the effect of the new
composite racquets was temporary. It does not appear that the composite racquets,
by increasing the pace and intensity of play, made it impossible for older players
to compete. Rather, the transition from wood to composite racquets temporarily
disadvantaged older players because the skills they had spent their career investing
in were no longer as valuable. These patterns show how long it took for professional

27



tennis to respond to the introduction of composite racquets. Depending on the
figure, it took until 2005 to 2010 for outcomes to return to the levels they were
at before composite racquets were introduced. Thus, the transition in response to
the new composite racquets lasted for nearly 25 years (1984–2010). If the average
player has a career of about six years, then a 25-year transition corresponds to four
generations of average professional tennis players. Because more successful players
have longer careers (about 15 years), the transition lasted for nearly two generations
of more successful players. The length of the transition is likely due to unmodeled
factors, such as the time it takes to discover the optimal strategy to use with the new
racquets and the time it takes to learn the ideal mix of skills that complemented the
composite racquet. These estimates are similar in magnitude to those from Clark
(2005), who estimates it took about 60 years for the technical innovations of the
Industrial Revolution to lead to rising real wages.

Fourth, we use our estimates of player quality to show more directly younger
players gained relative to older players. In Figure 11, we plot the median ages of
players with above- and below-average (log) quality (i.e., log q̂it > 0 and log q̂it ≤ 0
respectively). During the early 1970s, above-average players tended to be older than
below-average players. During the racquet transition the median age fell for both
groups, but it declined far more quickly for above-average players, so that for a few
years during the mid-1980s the median above-average player was no longer older
than the median below-average player. Over the next two decades, the median age
rose for both groups, again rising more quickly for above-average players. These
changes in the median age are even more dramatic when considering that the typical
professional tennis player competes on the tour for only 6 years. Figure 11 reports
the p-value from an F-test of whether the nonlinear trends of above- and below-
average players were parallel between 1970 and 1999. We find that not only did the
entire tour get temporarily younger after composite racquets arrived, but the age of
higher-quality players fell even more than lower-quality players.

Fifth, Figure 12 plots the evolution of the age-quality gradient over time. As the
model predicts, older players are typically better than younger players; one year is
correlated with approximately 2.5 percent higher quality before 1978. This occurs
both because older players have more experience, and because older players retire
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Figure 11: Median age of above- and below-average players over time

Notes: The figure plots the median age of above- and below-average players in each year (circles and
triangles) and a four-year lagged moving average (solid and dashed lines). The vertical dashed lines
mark the years of the racquet transition (1978–1984). The reported p-value corresponds to an F-test
for whether above-average and below-average players have parallel trends between 1970 and 1999.

when they are no longer successful, while a younger player at the same level of
quality might keep trying to improve. However, during the transition to composite
racquets the correlation falls, and the point estimates even turn negative for a few
years, before eventually recovering to their previous levels.

To put the changes in the age-quality gradient into dollar terms, we estimate the
relationship between a player’s estimated (log) quality and his (log) annual prize
money. Since we do not have reliable data about prize money prior to 1990, we
regress a player’s (log) annual prize money on his (log) estimated quality using data
pooled from the first five years available—1990 through 1994 (see Figure 13).26

We find that a ten percent increase in a player’s estimated quality corresponds to an
11.4 percent increase in prize money. Assuming this elasticity between prize money
and player quality has not changed over time, we can back out the implied OLS

26We exclude player-year observations with five or fewer matches and run a weighted regression,
weighting each observation by the number of matches played. The rationale for weighting by number
of matches is that players with more matches have more precisely estimated values for quality, thereby
mitigating attenuation bias.
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Figure 12: Correlation between estimated quality and age over time

Notes: The figure plots the age-quality gradient in each year (circles) and a four-year lagged moving
average (solid line). The vertical dashed lines mark the years of the racquet transition (1978–1984).
The p-value corresponds to an F-test for whether the pre-1978, 1978–1984, and 1985–1999 periods
have the same slopes and intercepts.

relationship between (log) prize money and age by:

βprize,age = βprize,qual×βqual,age = 1.14×βqual,age

where βy,x denotes the OLS coefficient from regressing y on x. Figure 14 plots the
implied OLS coefficient over time. Both before and after the racquet transition, being
one year older correlates with three to five percent higher annual earnings. However,
during the racquet transition, this age-earnings gradient temporarily disappeared.

7.4 Exit rates of older players rose relative to younger players

Our model does not make a clear prediction about how the exit decisions of older
players respond to the technology shock. However, as shown in Figure 15, we find
that exit rates rose during the racquet transition, most dramatically among older
players. We define an exit to occur whenever a player was active during year t but
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Figure 13: Estimated player quality and yearly prize money

Notes: The figure only includes data from 1990 to 1994 and players who played more than five
matches during the year. The regression line and marker sizes are weighted by number of matches
played.
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Figure 14: Implied age-earnings gradient

Notes: The implied age-earnings gradient in each year (circles) was calculated by regressing (log)
estimated quality on age in each year and regressing (log) annual prize money on (log) estimated
quality for the years 1990 to 1994. We then multiply these two coefficients together to obtain the
implied OLS coefficient from regressing (log) annual prize money on age in each year (circles). The
figure also plots a four-year lagged moving average (solid line). The p-value corresponds to an F-test
for whether the pre-1978, 1978–1984, and 1985–1999 periods have the same slopes and intercepts.
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was not active during year t +1.27 During the racquet transition, the exit rates for
players aged 22–25 and 26–29 rose approximately ten percentage points from 10 to
20 percent and from 20 to 30 percent, respectively. Although it began prior to the
racquet transition, the exit rate for players aged 30–39 rose even more dramatically.
Starting during the 1990s, however, the exit rates of players over age 25 declined,
nearly returning to their previous levels.
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Figure 15: Exit rates by age group over time

Notes: The figure plots the exit rate by age group for each year (circles) and a four-year lagged
moving average (solid line). The vertical dashed lines mark the years of the racquet transition
(1978–1984). The p-value corresponds to an F-test for whether the pre-1978, 1978–1984, and
1985–1999 periods have the same slopes and intercepts.

During the transition from wood to composite racquets, young players found it

27Although we rule it out in our model, this definition of exit implies that a player could exit (and
re-enter) multiple times over his career. Twenty-nine percent of players exit and re-enter at least once,
often due to injuries.
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easier to enter the tour and be successful. In Figure 16, we plot the average age at
which a birth cohort first entered the tour against the age of that cohort in 1980, when
the tour was transitioning from wood to composite racquets. Recall that “entering
the tour” means that a player is in the strongly connected component, so the age of
entry we measure indicates the first time a player had a substantial presence on the
tour. Players who were about 10 years old in 1980 entered the tour at an average age
of 20, but both older and younger cohorts entered as much as a year and a half later.
Notably, players who were 10 years old in 1980 were among the first who grew up
playing with composite racquets.
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Figure 16: Age when first entered tour by age in 1980

Notes: The figure plots the mean age when a player first entered the tour for each birth year, reported
as age in 1980 (circles) and a five-year centered moving average (solid line). The vertical dashed
lines mark the years of the racquet transition (1978–1984). The p-value corresponds to an F-test for
whether the trend for points to the left of 10 have a different intercept and slope than the trend for
points to the right of 10.

The combination of increased exit rates for older players and earlier entry ages
caused the age distribution of players on tour to compress and shift younger. Figure
17 plots the quartiles of the age distribution of all players on tour over time. During
the late 1970s and early 1980s, the median age fell from 25 to 23, and the 75th
percentile fell more dramatically, from 29 to 25. However, over time, the distribution
shifted back toward older ages, with the median age returning to 25.
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Figure 17: Age distribution over time

Notes: The figure plots the quartiles of the age distribution in each year, along with four-year lagged
moving averages. The vertical dashed lines mark the years of the racquet transition (1978–1984).
The p-value corresponds to an F-test for whether the pre-1978, 1978–1984, and 1985–1999 periods
have the same slopes and intercepts for the median age.

7.5 Cross-sectional inequality during the transition

Finally, we examine two measures of cross-sectional inequality and find the results
depend on the definition of inequality we use.28 This is unsurprising since Section
4.4 shows that skill-altering technical change makes an ambiguous prediction about
cross-sectional inequality. First, we plot the standard deviation of (log) player
quality in each year. Figure 18 shows that the standard deviation of player quality
dipped during the 1990s. However, we find the opposite for the second measure of
cross-sectional inequality. For this measure, we count the number of unique players
advancing to a given round of at least one Grand Slam tournament, and then divide
by the total number of slots in that round. This ratio measures the degree to which
success at Grand Slams is concentrated among a few players and ranges from 0.25
(most concentrated) to one (least concentrated). For example, there are 64 slots
available in the round of 16 across all four Grand Slam tournaments. If the same 16
players took those slots in each tournament, the ratio would be 0.25. At the other

28Ideally, we would examine inequality in player earnings. However, data on prize money is
unavailable prior to 1990.
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extreme, the ratio would be one if a completely different set of 16 players took the
slots in each tournament. Whether we examine the round of 16, 32, or 64, we find
that concentration was fairly constant until around 1984 when it began to rise (the
ratio began to fall). The increase in concentration was most pronounced for the
rounds of 32 and 64, which saw the number of players per slot decrease from 0.7
and 0.6 in 1980 to about 0.6 and 0.55 in the mid-1990s. Thus, even as the standard
deviation of player quality decreased across the tour as a whole, Grand Slam success
at the top of the tour became more concentrated among a smaller group of players.
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Figure 18: Cross-sectional standard deviation of player quality

Notes: The figure plots the standard deviation of (log) quality in each year, along with four-year
lagged moving averages. The vertical dashed lines mark the years of the racquet transition
(1978–1984).

8 Discussion

We now address limitations of our findings and alternative explanations. First, some
of our empirical results might be caused by the growth of the tour over time. For
example, the entry of young players might have been caused by increased demand
for new tennis players as the tour expanded. However, one problem with this
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Figure 19: Concentration of Grand Slam success

Notes: The figure plots four-year lagged moving averages of the number of unique players who
advanced to a given round in at least one Grand Slam event, divided by the number of slots in that
round over the year. The lower this ratio, the more concentrated Grand Slam success is among a small
number of players. The vertical dashed lines mark the years of the racquet transition (1978–1984).

explanation is that it would predict the exit rates of older players to fall, not rise.29

This explanation also cannot account for the change in the returns to height, the
reduction in the rank correlation of player quality and the age-quality gradient, and
the poor performance of birth cohorts who were in their prime during the racquet
transition. Still, we explore this possibility in Appendix E by repeating our analysis
while limiting the sample to data from only Grand Slams. This provides a constant
“tour size” in each year, though one drawback is that the Grand Slams do not contain
enough matches to reliably estimate player quality. Moreover, by focusing on Grand
Slams, our analysis is limited to the top players on tour. Nevertheless, we find similar
qualitative patterns to those in our main analysis.

Second, the changes we observe in tennis might be the result of broader changes
to sports or the economy. To test this, we compare the ages of Olympic athletes

29Greater demand for professional tennis would lead to an increase in both the number of players
and their wages, thereby reducing the exit rate of older players. The tour might have experienced a
supply shock of young players, which would increase the number of players and push wages down,
thereby raising the exit rate of older players. However, prize money rose over the transition period
(see Figure D.1 in the online appendix), which rules out a supply shock.
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Figure 20: Age distribution over time: Olympics vs. tennis

Notes: This figure plots quartiles of the age distribution for male athletes in the summer Olympic
games and the four-year moving average of quartiles of the age distribution from Figure 17. The set
of Olympic athletes is restricted to those competing in events which existed in all summer Olympic
games from 1960 to 2016, excluding tennis. The vertical dashed lines mark the years when
professional tennis players were transitioning to composite racquets. The data on Olympic athletes
comes from http://www.olympedia.org/.

over time to the ages of tennis players. We use data on male Olympic athletes who
competed in events that existed during all summer Olympic games from 1960 to
2016, excluding tennis. Figure 20 shows that in comparison to professional tennis,
the ages of Olympic athletes were stable over time. Prior to the introduction of
composite racquets, tennis players were older than Olympic athletes, but by the end
of the transition, that had reversed. In 1988, the median age of tennis players was
1.9 years lower than Olympians. But, between 1988 and 2012, the gap between
tennis players and Olympians declined by nearly half to 1.0 years in 2012, and we
see similar patterns at the 25th and 75th percentiles.

9 Conclusion

We examine the effects of technological change in the context of a major innovation
in men’s professional tennis—the introduction of composite racquets during the

37

http://www.olympedia.org/


late 1970s and early 1980s. We find that the introduction of composite racquets
temporarily helped younger players at the expense of older players, reduced the
rank correlation in player quality over time, and increased exit rates of older players
relative to younger ones. Over time, these temporary shifts largely reversed, though
the transition took two to four generations. These empirical findings are consistent
with a model of skill-altering technological change.

Men’s professional tennis provides an excellent setting for studying the effects
of skill-altering technological change on workers for four reasons. First, we have
detailed panel data on multiple cohorts of individual players. Second, the new
technology arrived suddenly and unexpectedly and was universally adopted within a
few years. Third, tennis careers are short—six years on average and rarely more than
15 years—which allows us to follow multiple cohorts of players over their entire
careers. Fourth, since we can observe the performance of a player without worrying
about the effects of teammates, professional tennis offers unusually clean measures
of worker productivity.

While the magnitude of the effects we identify depend on the size of the tech-
nological shock (i.e., the change in λ ), and so vary across settings, the qualitative
effects likely manifest in other situations. As such, this episode in men’s tennis
provides insights into the effects of past and future technological innovation on
workers. When a new technology arrives—whether tractors in farming, drafting
software in architecture, or composite racquets in professional tennis—current work-
ers find it difficult to adopt the new technology because their skills are adapted to
the prior technology. Thus, although they may attempt to switch, they remain at
a disadvantage to younger workers who have not spent valuable time learning to
use the now-outdated technology. Older workers experience a relative decline in
their productivity while younger workers receive a boost from being the first group
of workers to take full advantage of the new technology. Although these effects
are temporary, they persist for multiple generations of workers, with permanent
effects on middle-aged and older cohorts during the transition to the new technology.
Moreover, the risks of future skill-altering technological change will reduce workers
incentive to make human capital investments, especially investments in specialized
skills.
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