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Abstract

We study the effect of different school choice mechanisms on schools’ incentives for
quality improvement. To do so, we introduce the following criterion: A mechanism
respects improvements of school quality if each school becomes weakly better off when-
ever that school becomes more preferred by students. We first show that no stable
mechanism, or mechanism that is Pareto efficient for students (such as the Boston and
top trading cycles mechanisms), respects improvements of school quality. Nevertheless,
for large school districts, we demonstrate that any stable mechanism approximately re-
spects improvements of school quality; by contrast, the Boston and top trading cycles
mechanisms fail to do so. Thus a stable mechanism may provide better incentives for
schools to improve themselves than the Boston and top trading cycles mechanisms.
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If we...implement choice among public schools, we unlock the values of competi-

tion in the educational marketplace. Schools that compete for students...will by

virtue of their environment make those changes that allow them to succeed.

Time for Results,

1991 National Governors’ Association Report1

1 Introduction

School choice has grown rapidly in the United States and many other countries such as

Japan, South Korea, and the United Kingdom. In contrast to traditional neighborhood-

based placement, school districts with school choice programs allow children and their parents

to express preferences over public schools and use these preferences to determine student

placement. Many politicians, school reformers, and academics have embraced school choice as

a policy that will substantially improve educational outcomes; for instance, in their influential

book Politics, Markets, and America’s Schools, scholars John E. Chubb and Terry M. Moe

(1990) argue that school choice is “the most promising and innovative reform” available to

improve the quality of public schooling.

Motivated by this interest in school choice, a large body of research in the market design

literature now investigates how to assign school seats to students efficiently and fairly, recom-

mending specific school choice mechanisms. In particular, beginning with the seminal paper

by Abdulkadiroğlu and Sönmez (2003), it has been demonstrated that an extensively used

school choice mechanism called the “Boston mechanism” provides strong incentives for stu-

dents to misreport their preferences. Given this, two strategy-proof mechanisms have been

proposed: the “student-optimal stable mechanism” (or “deferred acceptance algorithm”)

and the “top trading cycles mechanism”. In fact, prompted by this research, the former has

been adopted in Boston and New York City, while San Francisco has announced plans to

adopt the latter.2

However, prior work on school choice in the market design literature has not analyzed the

effect of different school choice mechanisms on overall school quality, but rather has always

1The National Governors’ Association is a bipartisan public policy organization composed of the governors
of the U.S. states and territories.

2See Abdulkadiroğlu, Pathak, and Roth (2005, 2009) and Abdulkadiroğlu, Pathak, Roth, and
Sönmez (2005, 2006) for details of the implementation of these new school choice procedures in
New York and Boston, respectively. The announcement by the San Francisco Unified School
District of the plan to implement top trading cycles (which the school district calls “assign-
ment with transfers”) can be found at http://www.sfusd.edu/en/assets/sfusd-staff/enroll/files/

board-of-eduation-student-assignment-policy.pdf.

2

http://www.sfusd.edu/en/assets/sfusd-staff/enroll/files/board-of-eduation-student-assignment-policy.pdf
http://www.sfusd.edu/en/assets/sfusd-staff/enroll/files/board-of-eduation-student-assignment-policy.pdf


assumed that school quality is given and fixed. This is a serious omission, given that the

major impetus for the introduction of school choice has been the argument, advanced by

both academics and policymakers, that school choice will improve the quality of the public

educational system as a whole by introducing competition among schools. For instance,

Moe (2008) argues that school choice will induce schools “to educate, to be responsive, to

be efficient, and to innovate”, and the 1991 National Governors’ Association Report argues

that the nation can “increase excellence by increasing choice”. Nevertheless, formal analysis

of the effects of different school choice mechanisms on schools’ incentives to improve has

heretofore been absent from the market design literature.

This paper approaches this question by studying how the design of a school choice mech-

anism affects the competitive pressure on schools to improve. We start by formalizing a

criterion of whether a mechanism promotes school competition: A mechanism respects im-

provements of school quality if the set of students assigned to a school always becomes weakly

better for that school whenever that school becomes more preferred by students. If a school’s

effort to improve its quality makes it more attractive to students, then requiring that the

school choice mechanism assign a (weakly) better set of students to that school is a natural

and mild condition in order for school choice to incentivize that school to improve.

Despite the mildness of this criterion, we demonstrate that no stable mechanism (such

as the student-optimal stable mechanism) or mechanism that is Pareto efficient for students

(such as the Boston and top trading cycles mechanisms) respects improvements of school

quality. That is, for any such mechanism, there exist preference profiles for the schools

and students such that the outcome for a school becomes strictly worse as the school rises

in the preference orderings of the students. Given this impossibility result, we consider

domain restrictions on the class of school preference profiles to ensure that the school choice

mechanisms discussed above respect improvements of school quality. We show that the

necessary and sufficient condition is that school preferences are virtually homogeneous, that

is, all schools have essentially identical rankings over students; these results imply that no

standard mechanism always induces schools to improve.3

Even though our results show that none of the standard school choice mechanisms re-

spects improvements of school quality perfectly, it may be that instances where a school

benefits from discouraging student interest are rare for some mechanisms. If so, then that

mechanism may provide schools with incentives to improve in practice. To investigate this

possibility, we consider “large market” environments, with many schools and students, and

3For stable mechanisms, the characterization holds under the presumption that at least one school has
a capacity strictly greater than one; when each school has a capacity of one, the school-optimal stable
mechanism respects improvements of school quality.
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demonstrate that any stable mechanism (such as the student-optimal stable mechanism)

approximately respects improvements of school quality. That is, for “almost all” preference

profiles, a school is made weakly better off whenever students rank that school more highly.

By contrast, we also show that other mechanisms such as the Boston and the top trading

cycles mechanisms do not even approximately respect improvements in large markets. These

results suggest that the student-optimal stable mechanism is a better school choice mecha-

nism for promoting school competition than other competing mechanisms, particularly the

Boston and the top trading cycles mechanisms.

We also consider alternative concepts to study how robust the above results are to changes

in the criterion of promoting school competition. It may be socially desirable for different

schools to cater to the needs of different types of students and, if so, it may be enough that

a school has incentives to improve for students it find desirable.4 To formalize this concept,

we say that a mechanism respects improvements of school quality for desirable students if the

outcome for a school becomes weakly better whenever a set of students, each of whom that

school prefers to one of its current students, ranks that school more highly. While no stable

mechanism always satisfies this requirement, any stable mechanism satisfies this criterion

approximately in large markets; the Boston and top trading cycles mechanisms, however,

do not satisfy this criterion even approximately in large markets.5 Alternatively, a school

may be concerned solely with its enrollment: A mechanism respects improvements of school

quality in terms of enrollment if the number of students attending a school weakly increases

whenever that school is ranked more highly by students. Any stable mechanism, as well as the

Boston mechanism, satisfies this criterion, while the top trading cycles mechanism does not.

These results suggest an additional sense in which the student-optimal stable mechanism

provides schools with better incentives for quality improvements than the competing top

trading cycles mechanism.

Another natural question is whether the mechanisms discussed here respect improvements

of student quality, that is, whether a student is always weakly better off when schools rank

that student more highly. We show that not only the student-optimal stable mechanism,

but also the Boston mechanism and the top trading cycles mechanism satisfy this property.

4

5An even weaker criterion than respecting improvements for desirable students is also exploited for the
robustness analysis: A mechanism respects improvements of school quality for very desirable students if the
outcome for a school becomes weakly better whenever a set of students, each of whom the school prefers
to all of its current students, ranks the school more highly. The student-optimal stable mechanism and the
Boston mechanism satisfy this criterion for all markets while the top trading cycles mechanism does not.
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Related Literature

Theoretical analyses such as Abdulkadiroğlu and Sönmez (2003) and Ergin and Sönmez

(2006) have advocated for the student-optimal stable mechanism and the top trading cycles

mechanism based on their incentive, fairness, and efficiency properties. Their research has

lead to several school choice reforms, which were organized and reported by Abdulkadiroğlu,

Pathak, and Roth (2005, 2009) and Abdulkadiroğlu, Pathak, Roth, and Sönmez (2005, 2006).

This line of studies is extensively surveyed by Roth (2008), Sönmez and Ünver (2009), and

Pathak (2011). As we have already emphasized, all of these papers focus on the evaluation of

mechanisms in terms of the efficiency and fairness of allocations, assuming (implicitly) that

the quality of every school is fixed. While drawing extensively on this literature, we offer a

new perspective for distinguishing desirable school choice mechanisms from undesirable ones

by analyzing their effect on schools’ incentives for improving their educational quality.

The closest work to our work here is the pioneering study of college admissions by Balinski

and Sönmez (1999), who introduce the concept of respecting improvements of student quality.

According to their definition, a mechanism “respects improvements of student quality” if

whenever a student is ranked higher by schools, the student becomes weakly better off. Our

definition is a natural adaptation of their notion to the case in which a school improves in

students’ preference rankings.6 However, the results of Balinski and Sönmez (1999) cannot be

directly applied, as the model of school choice is asymmetric between schools and students

since schools have multiple seats while each student can attend only one school. In fact,

while Balinski and Sönmez (1999) show that the student-optimal stable mechanism respects

improvements of student quality, we show that no stable mechanism, not even the school-

optimal stable mechanism, respects improvements of school quality.7

From the methodological point of view, the current paper uses two types of analytical

methods from the market design literature. First, we show impossibility results on the

compatibility of some desirable properties and then find domain restrictions on the class of

preferences such that the desirable properties hold simultaneously. In the context of school

choice, previous studies such as Ergin (2002), Kesten (2006), and Haeringer and Klijn (2009)

find domain restrictions for the student-optimal stable mechanism and the top trading cycles

mechanism to satisfy several desirable properties. Similarly to these studies, we find new

domain restrictions for a stable or Pareto efficient mechanism to respect improvements; our

domain restriction, virtual homogeneity, is more restrictive than any of those identified in

6Bäıou and Balinski (2000) analyze respecting improvements in the many-to-many matching setting, but
their results are incorrect (Hatfield, Kojima, and Narita 2011).

7Sönmez and Switzer (2011) build on the work of Balinski and Sönmez (1999), showing that the student-
optimal stable mechanism respects improvements of student quality in the more general setting of matching
with contracts Hatfield and Milgrom (2005).
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these previous studies. Second, our paper also uses the large market approach used by,

among others, Roth and Peranson (1999), Immorlica and Mahdian (2005), and Kojima and

Pathak (2009). As these studies point out, large market analysis can often provide a positive

result in cases where more traditional approaches cannot, and thus may help make a clear

distinction between good mechanisms and bad ones. The current paper is another example

in which the large market approach enables us to make such a distinction and thus to provide

a clear policy recommendation.

The remainder of this paper is organized as follows. In Section 2, we present our model

and formally define the student-optimal stable mechanism, the Boston mechanism, and the

top trading cycles mechanism. In Section 3, we formally define respecting improvements

of school quality and present our impossibility results. In Section 4, we present our large

market results. Section 5 analyzes alternative criteria of promoting school competition, and

Section 6 discusses a number of related topics. We conclude in Section 7. All proofs are in

the Appendix unless explicitly noted otherwise.

2 Model

There is a finite set S of students and a finite set C of schools. Each student s ∈ S has a

strict preference relation �s over C∪{∅}, where ∅ denotes the outside option of the student.8

The weak preference relation associated with �s is denoted by %s and so we write c %s c̄

(where c, c̄ ∈ C ∪{∅}) if either c �s c̄ or c = c̄. A preference profile of all students is denoted

�S≡ (�s)s∈S.

Each school c ∈ C has a strict preference relation �c over the set of subsets of S. We

assume that the preference relation of each school is responsive (Roth, 1985): each school has

preferences over students and a quantity constraint, and takes the highest-ranked students

available to that school up to that quantity constraint. Formally, the preferences of school c

are responsive with capacity qc if

(1) For any s, s̄ ∈ S, if {s} �c {s̄}, then for any S ′ ⊆ S \ {s, s̄}, S ′ ∪ {s} �c S ′ ∪ {s̄}.

(2) For any s ∈ S, {s} �c ∅ if and only if for any S ′ ⊆ S such that |S ′| < qc, S
′∪{s} �c S ′,

and

(3) ∅ �c S ′ for any S ′ ⊆ S with |S ′| > qc.

8We distinguish ∅ and ∅, where ∅ denotes an outside option while ∅ is the empty set in the set-theoretic
sense.
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In addition, we assume that every student is acceptable to every school as we are primarily

interested in problems such as the assignment of students to public schools.9 The preference

profile of all schools is denoted �C≡ (�c)c∈C . A preference profile of all agents is denoted

�≡ (�C ,�S).

A matching is a vector µ = (µs)s∈S that assigns each student s a seat at a school (or the

outside option) µs ∈ C ∪ {∅}, and where each school c ∈ C is assigned at most qc students.

We denote by µc ≡ {s ∈ S|c = µs} the set of students who are assigned to school c.

A matching µ is Pareto efficient for students if there exists no matching µ′ such that

µ′s %s µs for all s ∈ S and µ′s �s µs for at least one s ∈ S.

A matching µ is individually rational if µs %s ∅ for every s ∈ S. A matching µ is

blocked by (s, c) ∈ S × C if c �s µs and there exists S ′ ⊆ µc ∪ s such that S ′ �c µc.10 A

matching µ is stable if it is individually rational and not blocked.

Two remarks are in order. First, in this model, schools are assumed to have preferences

over sets of students. Thus, our analysis can be utilized for other applications such as

certain entry-level labor markets (Roth, 1984) without modification. Second, in some school

districts such as Boston, the preference orderings of schools over students is determined by

priorities given by law (Abdulkadiroğlu and Sönmez, 2003). In such cases, it may not be

reasonable to assume that the priorities set by law represent real preferences for schools (or

school principals). We address this issue in Section 5.1.

2.1 Mechanisms

Given the set of students S and schools C, a mechanism is a function ϕ from the set

of preference profiles to the set of matchings. A mechanism ϕ is Pareto efficient for

students if ϕ(�) is a Pareto efficient matching for students for every preference profile �.

A mechanism ϕ is stable if ϕ(�) is a stable matching for every preference profile �. We

now define three mechanisms of particular interest for school choice problems.

2.1.1 The Student-Optimal Stable Mechanism

Given �, the (student-proposing) deferred acceptance (DA) algorithm of Gale and

Shapley (1962) is defined as follows.

• Step 1: Each student s ∈ S applies to her most preferred acceptable school (if any).

Each school tentatively keeps the highest-ranking students up to its capacity, and

9This assumption is needed only for our large market result for stable mechanisms (Theorem 3) and our
characterization results (Propositions 9 and 10). All of our other results hold even without this assumption.

10Throughout the paper, we denote singleton set {x} by x when there is no confusion.
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rejects every other student.

In general, for any step t ≥ 2,

• Step t: Each student s who was not tentatively matched to any school in Step (t− 1)

applies to her most preferred acceptable school that has not rejected her (if any). Each

school tenatively keeps the highest-ranking students up to its capacity from the set of

students previously tenatively matched to this school and the students newly applying,

and rejects every other student.

The algorithm terminates at the first step at which no student applies to a school. Each

student tentatively kept by a school at that step is allocated a seat in that school, resulting

in a matching which we denote by ϕS(�). The student-optimal stable mechanism is a

mechanism ϕS that produces ϕS(�) for every preference profile �. It is well known that ϕS

is a stable mechanism (Gale and Shapley, 1962). Moreover, the outcome of this mechanism

is the student-optimal stable matching, that is, the matching that is weakly preferred to

any other stable matching by all students. (The above name of the mechanism is due to

this property.) In addition, ϕS is known to be strategy-proof for students, that is, for

each student it is a weakly dominant strategy to report her true preferences (Dubins and

Freedman, 1981; Roth, 1982).11 Due to these properties, the deferred acceptance algorithm

has been implemented in both New York City (Abdulkadiroğlu, Pathak, and Roth, 2005)

and Boston (Abdulkadiroğlu, Pathak, Roth, and Sönmez, 2005).

Another canonical stable mechanism is the school-optimal stable mechanism. That

mechanism is based on the school-proposing version of the deferred acceptance algorithm, in

which schools make offers to students and students keep their most preferred offers at each

step. We denote the student-optimal stable mechanism by ϕS and the school-optimal stable

mechanism by ϕC ; ϕC is also the student-pessimal stable mechanism, i.e. it produces the

stable matching that every student weakly disprefers to every other stable matching (See

Theorem 2.13 of Roth and Sotomayor (1990)).

2.1.2 The Boston Mechanism

Given �, the Boston mechanism (Abdulkadiroğlu and Sönmez, 2003), denoted ϕB, is

defined through the following algorithm.12

11In fact, the student-optimal stable mechanism is (weakly) group strategy-proof, in the sense that there
is no group deviation which makes all the members of the group strictly better off (Dubins and Freedman,
1981).

12Alcalde (1996) calls this rule the “now-or-never” mechanism for the special case in which the capacity
of each school is one.
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• Step 1: Each student s ∈ S applies to her most preferred acceptable school (if any).

Each school accepts its most-preferred students up to its capacity and rejects every

other student.

In general, for any step t ≥ 2,

• Step t : Each student who has not been accepted by any school applies to her most

preferred acceptable school that has not rejected her (if any). Each school accepts its

most-preferred students up to its remaining capacity and rejects every other student.

The algorithm terminates at the first step in which no student applies to a school. Each

student accepted by a school during some step of the algorithm is allocated a seat in that

school. The Boston algorithm differs from the deferred acceptance algorithm in that when a

school accepts a student at a step, the student is guaranteed a seat at that school, while in

the deferred acceptance algorithm, that student may be later displaced by another student

whom the school likes better. Note that this mechanism is Pareto efficient for students

with respect to any reported preference profile. In Boston, the Boston mechanism has been

replaced by the student-optimal stable mechanism, but is still in use in many school districts,

such as Denver and Minneapolis (Miralles, 2009).

2.1.3 The Top Trading Cycles Mechanism

The top trading cycles (TTC) mechanism, denoted ϕTTC , is defined as follows: For any

t ≥ 1,

• Step t: Each student s ∈ S points to her most preferred school (if any); students who do

not point at any school are assigned to ∅. Each school c ∈ C points to its most preferred

student. As there are a finite number of schools and students, there exists at least one

cycle, i.e. a sequence of distinct schools and students (s1, c1, s2, c2, . . . , sK , cK) such

that student s1 points at school c1, school c1 points to student s2, student s2 points to

school c2, . . . , student sK points to school cK , and, finally, school cK points to student

s1. Every student sk (k = 1, . . . , K) is assigned to the school she is pointing at. Any

student who has been assigned a school seat or the outside option as well as any school

c ∈ C which has been assigned students such that the number of them is equal to its

capacity qc is removed. If no student remains, the algorithm terminates; otherwise, it

proceeds to the next step.

This algorithm terminates in a finite number of steps as at least one student is matched

with a school (or ∅) at each step and there are only a finite number of students. The TTC

9



mechanism is defined as a rule that, for any preference profile �, produces ϕTTC(�) through

the above algorithm.

The current version of the top trading cycles algorithm was introduced by Abdulkadiroğlu

and Sönmez (2003) for the school choice problem.13 While it does not necessarily produce a

stable matching, the mechanism has a number of desirable properties. First, it always pro-

duces a Pareto efficient matching, unlike the student-optimal stable mechanism.14 Second,

it is group strategy-proof, that is, no coalition of students can jointly misreport their prefer-

ences in such a way that every student in the coalition is made weakly better off with at least

one student strictly better off. Based on these advantages, the top trading cycles algorithm

has been considered for use in a number of school districts in the United States, such as

Boston (which ultimately decided to use the student-optimal stable mechanism) and San

Francisco (which recently announced plans to implement a top trading cycles mechanism).

3 Respecting Improvements of School Quality

The main goal of this paper is to analyze how the design of a school choice mechanism affects

competitive pressure on schools to improve themselves. To do this, we now define a criterion

for evaluating school choice mechanisms in terms of the incentives they provide for school

improvement. We first formally specify the notion of school improvement in our model.

Definition 1. A preference relation �′s is an improvement for school c over the preference

relation �s if

(1) For all c̄ ∈ C ∪ {∅}, if c �s c̄, then c �′s c̄, and

(2) For all c̄, ĉ ∈ (C ∪ {∅}) \ {c}, c̄ �′s ĉ if and only if c̄ �s ĉ.

The student preference profile �′S is an improvement for school c over �S if for every student

s, �′s is an improvement for school c over �s.

We also say that �′s is a disimprovement for school c over �s if �s is an improvement

for school c over �′s and that �′S is a disimprovement over �S if �S is an improvement over

�′S.15

13The original top trading cycles algorithm was defined in the context of the housing market and is
attributed to David Gale by Shapley and Scarf (1974).

14While the Boston mechanism is Pareto efficient with respect to the stated preferences, it is well-known
that it is not, in general, a Nash equilibrium for students to report their preferences truthfully. In fact, the
set of Nash equilibrium outcomes under the Boston mechanism is equivalent to the set of stable matchings
(Ergin and Sönmez, 2006) and so we would not, in general, expect that the Boston mechanism would result
in a Pareto efficient outcome.

15We will also say that �′ is a (dis)improvement for school c over � if �′S is a (dis)improvement for school
c over �S and �′C=�C .
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Put simply, a preference profile �′S is an improvement for school c over the preference

profile �S when every student ranks c weakly higher under �′S while the ordering of other

schools is unchanged between the two preference profiles. When a school improves its quality,

it should become more attractive to every student without changing the relative rankings of

other schools, and the concept of school improvement is meant to capture this intuition in

the standard ordinal setting of the matching literature. With this concept at hand, we now

define the property by which we will evaluate school choice mechanisms in this work.

Definition 2. A mechanism ϕ respects improvements of school quality at the school

preference profile �C if, for all c ∈ C and student preference profiles �S and �′S, if �′S is an

improvement for school c over �S, then ϕc(�C ,�′S) %c ϕc(�C ,�S).

Equivalently, a mechanism ϕ respects improvements of school quality at school preference

profile �C if there do not exist a school c and student preference profiles �S and �′S such

that �′S is a disimprovement for school c over �S while ϕc(�′S,�C) �c ϕc(�S,�C).

This definition requires that the outcome of a mechanism be weakly better for a school

if that school becomes more preferred by students. If a school’s effort to improve its quality

makes it more attractive to students, then the concept of respecting improvements of school

quality seems to be a natural and mild criterion for schools to have incentives to invest in

quality improvement.

The concept of respecting improvements was introduced by Balinski and Sönmez (1999)

in the context of centralized college admission. In their work, a mechanism respects improve-

ments of student quality if whenever a student improves in colleges’ preference rankings, that

student is better off. They show that the student-optimal stable mechanism is the unique

stable mechanism that respects improvements of student quality.16 The current definition

is a natural adaptation of their notion to the case in which a school improves in students’

preference rankings. The main difference between our concept and that of Balinski and

Sönmez (1999) is that we consider improvements of school quality rather than those of stu-

dent quality. Because the matching model is asymmetric between schools and students in

the sense that schools have multiple seats while each student can attend only one school,

the result by Balinski and Sönmez (1999) cannot be directly applied. In fact, as we will see

in the next section, no stable mechanism respects improvements of school quality, which is

in sharp contrast to the result by Balinski and Sönmez (1999).

16See our discussion in Section 6.2.
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3.1 Stable Mechanisms

We first investigate whether stable mechanisms such as the student-optimal stable mechanism

respect improvements.17 The following example offers a negative answer to this question.

Example 1. Let S = {s, s̄}, C = {c, c̄}. Consider the following preferences:

�s : c̄, c, ∅, �c : s, s̄,

�s̄ : c̄, c, ∅, �c̄ : s̄, s,

where the notational convention for students is that student s prefers c̄ most, c second,

and ∅ third, and so forth, and the notational convention for schools is that they have some

responsive preferences consistent with preferences over students as described above. (This

notation is used throughout.) The capacities of the schools are given by qc = 2 and qc̄ = 1.18

Note that at the first step of the student-proposing deferred acceptance algorithm under

the preference profile �≡ (�s,�s̄,�c,�c̄), both students s and s̄ apply to c̄. Since qc̄ = 1, c̄

rejects s. Then s applies to c, where she is accepted. The algorithm terminates at this step,

producing the student-optimal stable matching,

ϕS(�) =

(
c c̄

s s̄

)
,

where this matrix notation represents the matching where c is matched with s while c̄

is matched with s̄. (Again, this notation is used throughout.) At the first step of the

school-proposing deferred acceptance algorithm under preference profile �, school c proposes

to both s and s̄ while c̄ proposes to s̄. Student s̄ keeps c̄ and rejects c while student

s keeps c. Since school c has proposed to all students, the algorithm terminates. Thus

the school-optimal stable matching ϕC(�) is equal to ϕS(�). Since it is well-known that

ϕSs (�) %s µs %s ϕ
C
s (�) for any stable matching µ, it follows that this market has a unique

stable matching, ϕS(�) = ϕC(�).

Now, consider the preference relation �′s̄ such that

�′s̄: c, c̄, ∅.
17For brevity, we will often write “respecting improvements” for the longer phrase “respecting improve-

ments of school quality”.
18Note that, strictly speaking, the information on school preferences over individual students and the

capacity does not uniquely specify that school’s preference relation over groups of students. Whenever we
specify a school’s preferences over individual students and its capacity only, it should be understood to mean
an arbitrary responsive preference relation consistent with the given information.

12



Note that �′s̄ is an improvement for school c over �s̄. At the first step of the student-

proposing deferred acceptance algorithm under preference profile (�′s̄,�−s̄),19 student s ap-

plies to c̄ while student s̄ applies to c. The algorithm terminates immediately at this step,

producing the student-optimal stable matching

ϕS(�′s̄,�−s̄) =

(
c c̄

s̄ s

)
.

On the other hand, at the first step of the school-proposing deferred acceptance algorithm

under preference profile (�′s̄,�−s̄), school c proposes to both s and s̄ while c̄ proposes to

s̄. Student s̄ rejects c̄. Rejected from its first choice s̄, c̄ proposes to s. Now student s

rejects c. Because school c has proposed to all students, the algorithm terminates. Thus the

school-optimal stable matching ϕC(�′s̄,�−s̄) is equal to ϕS(�′s̄,�−s̄). This implies that this

market has a unique stable matching, ϕS(�′s̄,�−s̄) = ϕC(�′s̄,�−s̄).
From the arguments above, we have that, for any stable mechanism ϕ,

ϕc(�) = s �c s̄ = ϕc(�′s̄,�−s̄),

even though �′s̄ is an improvement for c over �s; hence, ϕ does not respect improvements

of school quality at the school preference profile �C .

The finding from Example 1 can be summarized in the following statement.

Theorem 1. There exists no stable mechanism that respects improvements of school quality

at every school preference profile.

3.2 Pareto Efficient Mechanisms for Students

As in many other resource allocation problems, Pareto efficiency for students is a popular

desideratum in school choice because students are considered to be the beneficiaries of public

schooling. While the student-optimal stable mechanism is not Pareto efficient for students,

there are other mechanisms that are. The popular Boston mechanism (under truth-telling

by students) and the theoretically favored top trading cycles mechanism are such examples.

Thus it would be of interest to investigate whether these mechanisms or any other Pareto

efficient mechanism respects improvements of school quality. As the following example shows,

it turns out that there exists no mechanism that is Pareto efficient for students and that

respects improvements of school quality.

19Subscript −i indicates C ∪ S \ {i}, that is, the set of all agents except for i. For instance, �−s̄ is the
profile of preferences of all students and schools except for student s̄.
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Example 2. Suppose that there exists a mechanism ϕ that is Pareto efficient for students

and respects improvements of school quality. Let S = {s, s̄}, C = {c, c̄}, and the preferences

of the schools be given by

�c : s̄, s, ∅,

�c̄ : s, s̄, ∅,

with capacities of qc = qc̄ = 1. First, consider the following preference profile of students:

�s : c̄, ∅,

�s̄ : c, ∅.

Under �≡ (�s,�s̄,�c,�c̄), the unique Pareto efficient matching is

ϕ(�) =

(
c c̄

s̄ s

)
.

Thus, in the outcome of the mechanism under �, school c̄ is matched with student s.

Now consider the student preference profile �′S≡ (�s,�′s̄) where the preference of s̄ has

changed to

�′s̄ : c̄, c, ∅.

Note that �′s̄ is an improvement for school c̄ over �s̄; hence, c̄ must obtain at least as good

an outcome under �′≡ (�′S,�C) as under �, and so c̄ must be matched to s. By Pareto

efficiency, then, s̄ must be matched to c and so ϕ(�′) = ϕ(�).

Finally, consider another student preference profile �′′S≡ (�′′s ,�′s̄) where

�′′s : c, c̄, ∅.

Note that �′′S is an improvement for school c over �′S. Under �′′≡ (�′′S,�C), the unique

Pareto efficient matching for students is

ϕ(�′′) =

(
c c̄

s s̄

)
,

which implies that c is matched with s in the outcome of the mechanism. However, note

that ϕc(�′) = s̄ �c s = ϕc(�′′) although �′′S is an improvement for school c over �′S. This
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means that this mechanism does not respect improvements of school quality, which is a

contradiction.

The finding from Example 2 can be summarized in the following statement.

Theorem 2. There exists no mechanism that is Pareto efficient for students and respects

improvements of school quality for every school preference profile.

Recall that the Boston and the top trading cycles mechanisms are Pareto efficient for

students. The above theorem shows that these popular mechanisms do not respect improve-

ments of school quality.

Remark. The above conclusion of Theorem 2 for the Boston mechanism is with respect to

the students’ reported preferences, but it is well known that truthtelling is not a dominant

strategy under the Boston mechanism. However, Theorem 1 in Section 3.1 sheds some light

on the Boston mechanism when students behave strategically. Although the Boston mecha-

nism is not stable, the set of Nash equilibrium outcomes under that mechanism is equivalent

to the set of stable matchings (Ergin and Sönmez, 2006). Therefore, our Theorem 1 implies

that the Boston mechanism does not respect improvements under strategic play if students

play a Nash equilibrium.

3.3 Conditions on Preferences for Respecting Improvements

Given that the above representative mechanisms do not respect improvements at every school

preference profile, a natural question is what conditions, if any, on the school preference pro-

file �C enable a stable or Pareto efficient mechanism to respects improvements. Informally

speaking, we say that a school preference profile is virtually homogeneous if the rankings

of students are identical across all schools except possibly for the “highest-ranked” students,

i.e. students that every school would accept, regardless of the other students available to

that school; the precise definition is given in Section 6.1. Clearly this condition is a very

strong requirement on school preferences and, in fact, many domain restrictions used in the

literature are implied by virtual homogeneity.20

It turns out that virtual homogeneity is the “necessary and sufficient” condition on school

preferences for a stable or Pareto efficient mechanism to respect improvements of school

quality. In particular, Propositions 9 and 10 in Section 6.1 imply the following fact: When

at least one school has capacity larger than one, there exists a stable mechanism or a Pareto

20We discuss the relationship between virtual homogeneity and existing domain restrictions in the literature
in Section 6.1.
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efficient mechanism for students that respects improvements of school quality if and only if

the school preference profile is virtually homogeneous.

Since virtual homogeneity is an extremely strong requirement, this result suggests that

the concern that stable or Pareto efficient mechanisms may provide perverse incentives to

schools cannot be easily precluded by any mild preference domain restriction. All details

including the formal definition of virtual homogeneity and the statements of Propositions 9

and 10 are offered in Section 6.1. This negative result motivates our study in the next section

on the properties of mechanisms in large markets.

4 Respecting Improvements in Large Markets

While the results of Section 3 show that no standard school choice mechanism always respects

improvements of school quality, it may be that violations of this condition are rare for some

school choice mechanisms. In this section, we investigate this possibility by considering large

market environments.

4.1 The Large Market Model

We now introduce the following large markets environment, which is (a slight generalization

of) the environment studied by Kojima and Pathak (2009). A random market is a tuple

Γ̃ = (C, S, k,D), where k is a positive integer and D is a pair (DC ,DS) of probability

distributions: Each random market induces a market by randomly generating preferences of

students and schools. First, DS = (pc)c∈C is a probability distribution on C. Preferences of

each student s are drawn as follows (Immorlica and Mahdian, 2005):

• Step 1: Select a school independently from distribution DS. List this school as the top

ranked school of student s.

In general,

• Step t ≤ k: Select a school independently from distribution DS until a school is drawn

that has not been drawn in any previous step. List this school as the tth most preferred

school of student s.

In other words, each student chooses k schools repeatedly from DS without replacement.

Student s finds these k schools acceptable, and all other schools unacceptable. For example,

if DS is the uniform distribution on C, then the preference list is drawn from the uniform

distribution over the set of all preference lists of length k.
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For schools, preference profile �C is drawn from the given distribution DC over school

preference profiles. We do not impose any restriction on DC at this point. In particular,

we allow correlations in school preferences and even the possibility that DC is a degenerate

distribution, in which case school preferences are deterministic.

A sequence of random markets is denoted by (Γ̃1, Γ̃2, . . . ) = (Γ̃n)n∈N, where Γ̃n =

(Cn, Sn, kn,Dn) is a random market in which |Cn| = n is the number of schools.21 Consider

the following regularity conditions defined by Kojima and Pathak (2009).22

Definition 3. A sequence of random markets (Γ̃n)n∈N is regular if there exist positive

integers k, q̃ and q̂ such that

(1) kn ≤ k for all n,

(2) qc ≤ q̂ for all n and c ∈ Cn,

(3) |Sn| ≤ q̃n for all n, and

(4) for all n and c ∈ Cn, every s ∈ Sn is acceptable to c at any realization of preferences

for c at DCn .

Condition (1) above assumes that the length of students’ preference lists is bounded from

above even when the market size grows. Condition (2) requires that the number of seats

in any one school is bounded even in large school districts. Condition (3) requires that

the number of students does not grow much faster than that of schools (it is allowed, on

the contrary, that the number of students does not grow as fast as the number of schools).

Condition (4) requires that, at any realized preference profile, each school finds any student

acceptable, but preferences are otherwise arbitrary.23

We introduce another concept defined by Kojima and Pathak (2009). Let

VT (n) ≡ {c ∈ Cn|max
c̄∈Cn
{pnc̄ }/pnc ≤ T and |{s ∈ Sn|c �s ∅}| < qc}.

In words, VT (n) is a set of schools such that (i) each school c in this set is sufficiently popular

ex ante, i.e. the ratio of pnc̄ to pnc , where c̄ is the most popular school, does not grow without

21Unless specified otherwise, our convention is that superscripts are used for the number of schools present
in the market whereas subscripts are used for agents.

22A careful reader may notice that our regularity conditions are more general than the ones presented in
the main text of Kojima and Pathak (2009). More specifically, the main text of Kojima and Pathak (2009)
assumes that kn = k (rather than kn ≤ k), q̂ = q̃, and that the distribution of school preference profiles is
degenerate (that is, school preferences are deterministic). However, as Kojima and Pathak (2009) point out,
all of their results hold under the set of assumptions introduced here.

23As mentioned by Kojima and Pathak (2009), it is possible to weaken this condition such that many, but
not all, schools find all students to be acceptable.
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bound as n grows large, while (ii) there are fewer students who find the school acceptable

than the capacity of the school ex post. Note that VT (n) is a random set because student

preferences are stochastic.

Definition 4. A sequence of random markets is sufficiently thick if there exists T ∈ R
such that E[|VT (n)|] approaches infinity as n goes to infinity.

This condition requires that the expected number of schools that are popular enough ex

ante, yet have fewer students who find the school acceptable than their numbers of seats, i.e.,

VT (n), grows infinitely large as the market becomes large. As we will see later, this condition

guarantees that the market is “thick enough” to absorb certain market disruptions. To gain

intuition, consider a change in the market in which an additional student needs to be placed

at a school. If the market is sufficiently thick, such a student is likely to find a seat at a school

that has a seat for her in a stable matching without changing the assignment of many other

students. In other words, the sufficient thickness condition implies that a small disruption of

the market is likely to be absorbed by vacant seats. While the condition itself is technically

involved, many types of distributions satisfy sufficient thickness (in fact, the concept is not

really intended to offer an “intuitive” notion, but rather to subsume as many practical cases

as possible). For instance, if all student preferences are drawn from the uniform distribution,

the market will be sufficiently thick. To describe another, more general, example, we say

that a sequence of random markets satisfies moderate similarity if there is a bound T

such that pc̄/pc ≤ T for all c, c̄ ∈ Cn for all n. Such a restriction has been employed in

studies such as Manea (2009), Kojima, Pathak, and Roth (2011), and Ashlagi, Braverman,

and Hassidim (2011).24 Kojima and Pathak (2009) show that moderate similarity implies

sufficient thickness and offer other examples of student preference distributions that satisfy

the sufficient thickness condition.

Remark. Condition (1) of regularity requires that the number of schools acceptable to each

student is bounded. This assumption is motivated by observations in some school districts:

In New York City, almost three quarters of students rank less than 12 schools even though

there were over 500 school programs. In Boston, more than 90% of students rank 5 or

fewer schools at the elementary school level out of about 30 different schools in each zone.

Still, it is of interest to consider alternative assumptions. We say that the sequence of

random markets has an excess supply of school capacities if there exists λ > 0 such

that
∑

c∈Cn qc − |Sn| ≥ λn for all n.25 This condition requires, as is usually the case in the

24The term “moderate similarity” follows Manea (2009).
25This condition is a slight modification of the “excess number of positions” condition assumed by Ashlagi,

Braverman, and Hassidim (2011) in a slightly different environment of matching with couples.
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public school context, there are more than sufficient capacities in schools to accommodate all

students in the district. The conclusion of our main result, Theorem 3, holds even without

condition (1) of regularity—so students can find any number of schools acceptable—under

an excess supply of school capacities and moderate similarity. See the Appendix for details.

4.2 Main Results

For any random market Γ̃, school c, and mechanism ϕ, let αc(Γ̃, ϕ) be the probability that the

realized preference profile � has the property that there exists a student preference profile

�′S such that �′S is a disimprovement over �S for c while ϕc(�′S,�C) �c ϕc(�). We say that

a mechanism ϕ approximately respects improvements of school quality in large

markets if, for any sequence of random markets (Γ̃n)n∈N that is regular and sufficiently

thick, for any ε > 0, there exists an integer m such that, for any random market Γ̃n in the

sequence with n > m and any c ∈ Cn, we have that αc(Γ̃
n, ϕ) < ε. As the name suggests, a

mechanism approximately respects improvements in large markets if the probability that a

school is made better off by being less preferred by students converges to zero as the size of

the markets approaches infinity. With this concept, we are ready to state our main results.

Theorem 3. Any stable mechanism approximately respects improvements of school quality

in large markets.

Proof. See the Appendix.

This theorem suggests that while no stable mechanism always respects improvements,

such a perverse outcome occurs only very rarely in large markets. More specifically, as the

number of participating schools approaches infinity (while the number of students can also

grow but does not have to), the probability of such an incident converges to zero.

We defer the formal proof of the theorem to the Appendix and offer an outline of the

argument here. For simplicity, we focus our attention on the student-optimal stable mecha-

nism. First, recall Example 1. In that example, school c is better off when student s̄ prefers

school c̄ to c than when student s̄ prefers school c to c̄. The reason for this is that when

student s̄ prefers school c̄ to c, the student s̄ displaces student s from school c̄ and then

student s applies to school c, which in turn makes school c better off. More generally, a

school can be made better off when a student demotes the school in her preference ranking

because it increases competition in a different school, thus creating a “rejection chain” that

reaches the original school.

Despite this fact, the above theorem says that the probability of such a perverse outcome

becomes small in large markets. The intuition behind this result is as follows. If there are
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a large number of schools in the market, then it can be shown that with high probability,

there are also a large number of schools with vacant seats (under the sufficient thickness

assumption). Hence, when the ranking of a school c falls for some student s, the probability

that a student involved in a rejection chain will apply to a school with vacant seats is much

higher than the probability that the student will apply to c, as there are a large number of

schools with vacant seats. Since every student is acceptable to any school by assumption, if

such an application happens, the rejection chain then terminates without reaching c. Thus,

the probability that the rejection chain reaches and benefits c is small.

The main technical contribution of the proof is to rigorously establish that the above

intuition goes through. To do so, we need to overcome two difficulties. First, in spite of the

plausibility of the above example, it is not clear whether the occurrence of such a rejection

chain is the only reason that a stable mechanism does not respect improvements. Second,

while the above intuition is only applicable to the student-optimal stable mechanism, we

must show that the conclusion of the theorem holds not only for the student-optimal stable

mechanism but also for an arbitrary stable mechanism. To address these issues, our proof

proceeds in three steps. The first step is to establish the following relationship between stable

mechanisms that fail to respect improvements of school quality and stable mechanisms that

are subject to strategic preference manipulation by schools.

Lemma 1. Let ϕ be a stable mechanism.

(1) Suppose that the preference profile � and student preference profile �′S are such that �′S
is a disimprovement for c over �S and ϕc(�′S,�C) �c ϕc(�) for a school c ∈ C. Then

there exists a (reported) preference relation �′′c for c such that ϕc(�′′c ,�−c) �c ϕc(�).

(2) Suppose that there exists a (reported) preference relation �′′c for c such that ϕc(�′′c ,�−c)
�c ϕc(�). Then there exists a student preference profile �′S such that �′S is a disim-

provement for c over �S and ϕc(�′S,�C) �c ϕc(�).26

This lemma shows that for stable mechanisms, there is a certain equivalence between

the failure of respecting improvements of school quality and the vulnerability to strategic

manipulations by schools. In particular, Part 1 of the lemma shows that whenever there

exists a school preference profile such that ϕ does not respect improvements for a school

at that school preference profile, then there exists a reported preference profile for that

26Note that Part 2 of Lemma 1 is not needed for showing Theorem 3. Still, it is of independent interest in
that, for instance, Corollary 1 in Section 6.2 utilizes not only Part 1 but also Part 2 of Lemma 1. Furthermore,
our Theorem 1 is a corollary of Lemma 1, as an impossibility theorem of Roth (1984) shows that there exists
no stable mechanism that is strategy-proof for schools while our Lemma 1 shows that strategy-proofness for
schools is equivalent to respecting improvements of school quality within the class of stable mechanisms.
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school that makes the school strictly better off than when that school truthfully reports its

preferences. Thus, to prove Theorem 3, it is sufficient to show that in any stable mechanism

it is approximately optimal for schools to report their true preferences in large markets.

The second step of the proof enables us to focus on the student-optimal stable mechanism.

To do so, we invoke the fact that whenever a stable mechanism can be profitably manipulated

by a school, the student-optimal stable mechanism can be profitably manipulated by the

same school at that preference profile (Pathak and Sönmez (2011)). By this result and

the preceding argument, the probability of a school preference profile such that a stable

mechanism ϕ does not respect improvements at that preference profile is bounded from above

by the probability that the student-optimal stable mechanism can be profitably manipulated

by a school.

The last step of the proof is to bound the probability that the student-optimal stable

mechanism can be profitably manipulated by a school. Under our assumptions, Kojima and

Pathak (2009) show that this probability converges to zero as the market size approaches

infinity. This result and the arguments in the preceding paragraphs complete the proof.

Remark. In Theorem 3, the order of convergence is O(1/E[VT (n)]), which by the sufficient

thickness assumption converges to zero. For instance, if the sequence of random markets

satisfies moderate similarity (Section 4.1), then the order of convergence is O(1/n). See the

Appendix for details.

In contrast to stable mechanisms, neither the Boston mechanism nor the top trading

cycles mechanism approximately respect improvements even in large markets. More precisely,

the following results show that, even for arbitrarily large markets, under these mechanisms a

school can be made better off if some students demote the school in their preference rankings

with a nonnegligible probability.27

Theorem 4. The Boston mechanism does not approximately respect improvements of school

quality in large markets.

Proof. See the Appendix.

Theorem 5. The top trading cycles mechanism does not approximately respect improvements

of school quality in large markets.

Proof. See the Appendix.

27In fact, the proofs of these theorems show that the failure of respecting improvements occurs not only
for large markets, but for any market with the number of schools n ≥ 2. (Of course, both the Boston and
the TTC mechanisms respect improvements trivially for the case with n = 1.)
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The negative results of Theorems 4 and 5 provide a sharp contrast to the positive result

of Theorem 3. These results indicate that schools may not be incentivized to reduce school

quality for any student under the student-optimal stable mechanism, while they will be

incentivized to reduce school quality for some students under the Boston or TTC mechanisms.

Furthermore, the contrast in our positive and negative results highlights the differences

in strategy by schools under the different mechanisms. When the student-optimal stable

mechanism is used, it only behooves a school to discourage a student if that student will

begin a rejection chain which ends with another student, whom the school likes better,

applying to that school; these students are very hard to identify in practice, and so such

strategies by school principals will be rare. By contrast, when either the Boston or TTC

mechanism is used, the proofs of the theorems show that a school could benefit by ensuring

that students the school finds undesirable do not wish to attend the school; these students

are likely easy for the school to identify. These “undesirable” students are often members

of the most vulnerable parts of society, and the Boston or TTC mechanisms may induce

schools to intentionally make their schools less hospitable for these students.

The intuition for Theorem 4 is as follows. Recall that in the Boston mechanism, every

acceptance is final in each step. Therefore, if a student applies to a school in an earlier step

than its more preferred student, the mechanism can match the former to the school at the

expense of the latter. Hence, if the less preferred student changes her preferences to like the

school better, it can lead to an inferior outcome for the school as it may induce that student

to apply earlier. This logic is relatively simple and does not depend on the size of the market:

Roughly speaking, a randomly chosen student is less preferred to another randomly chosen

student with a fixed probability, whether or not the market is large.28 The formal proof in

the Appendix makes this intuition precise, by presenting a random market in which a less

preferred student applies for a position at a school earlier than a more preferred student.

The intuition for Theorem 5 is only slightly more complicated. In TTC, even an unde-

sirable student may be matched to a school if the student can trade priorities with another

student who has a high priority for that school. Such a trade can crowd out a student whose

priority is higher than the first student but lower than the second. Thus if an undesirable

student changes her preferences to like a school better, it may lead to an inferior outcome for

the school as such a crowding out may occur. As in the Boston mechanism, this effect can

remain even in large economies. The precise argument, again, can be found in the Appendix.

28Of course, one needs to consider the conditional probability that one student is more preferred than
another given what happens in the mechanism. This issue is considered in the formal proof in the Appendix.
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5 Alternative Criteria

5.1 Respecting Improvements of School Quality in Terms of En-

rollment

In the preceding discussion on respecting improvements of school quality, whether a mecha-

nism respects improvements is judged in terms of schools’ preferences. This means that we

implicitly assume that school preferences in the model are the preferences by which schools

evaluate matchings. However, in many real-life school choice systems, school preferences do

not necessarily reflect schools’ true preferences (if any). Rather, they are often priorities set

by law, as is the case for schools in Boston. In such cases, a primary objective of schools

is likely to be to enroll as many students as possible. Reasons for this include that school

budgets are often determined based on enrollments and that schools attended by too few

students are often closed.29 If schools desire to increase enrollment as much as possible,

the following variant of our criterion, respecting improvements of school quality in terms of

enrollment, would be a natural requirement for a mechanism to promote school competition.

Definition 5. A mechanism ϕ respects improvements of school quality in terms of

enrollment at the school preference profile �C if, for all c ∈ C and student preference

profiles �S and �′S, if �S is an improvement for school c over �′S, then |ϕc(�C ,�S)| ≥
|ϕc(�C ,�′S)|.

In other words, a mechanism respects improvements of school quality in terms of en-

rollment if the enrollment of a school weakly increases whenever that school becomes more

preferred by students. Note that respecting improvements in terms of enrollment and the

original definition of respecting improvements of school quality are logically independent.

As in the case with the original notion of respecting improvements, we first consider

whether stable mechanisms, particularly the student-optimal stable mechanism, respect im-

provements in terms of enrollment. As shown by the following result, in contrast to Theorem

1, it turns out that any stable mechanism respects improvements in terms of enrollment.

Proposition 1. Any stable mechanism respects improvements of school quality in terms of

enrollment at every school preference profile.

Proof. See the Appendix.

29For example, the Chicago Public Schools’ School Closing Guidelines, http://www.cps.edu/

SiteCollectionDocuments/SchoolClosingGuidelines.pdf, cites under-enrollment as a criterion of school
closing. In fact, under-enrollment is often used as a criterion for closing. See, for instance, the recent contro-
versy over the closing of the once-venerable Jamaica High School in New York City partly due to declining
enrollment (Daily News, 2011).
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In addition, the next result demonstrates that the Boston mechanism also respects im-

provements in terms of enrollment.

Proposition 2. The Boston mechanism respects improvements of school quality in terms of

enrollment at every school preference profile.30

Proof. See the Appendix.

Given that all stable mechanisms and the Boston mechanism, a Pareto efficient mecha-

nism for students, respect improvements in terms of enrollment, some readers may suspect

that the TTC mechanism, which is also Pareto efficient as well as strategy-proof for stu-

dents, would satisfy the criterion. However, as demonstrated by the following result, the

top trading cycles mechanism does not necessarily respect improvements of school quality

in terms of enrollment.

Proposition 3. The TTC mechanism does not respect improvements of school quality in

terms of enrollment at all school preference profiles.

Proof. Consider the following environment. There are schools c1, c2, c3, and c4, and students

s1, s2, s3, and s4. School c1 has a capacity of 2 seats while each of the other schools has a

capacity of 1 seat. The preference profile � of students and schools is given by:

�s1 : c3, c1, ∅, �c1 : s1, s2, s3, s4, ∅,

�s2 : c2, c1, ∅, �c2 : s1, s2, . . . , ∅

�s3 : c3, c1, ∅, �c3 : s4, s3, s2, s1, ∅

�s4 : c2, c4, ∅, �c4 : s4, . . . , ∅.

Under this preference profile, the TTC outcome is(
c1 c2 c3 c4

{s2, s3} s4 s1 ∅

)
,

where two positions of c1 are filled.

Now consider an alternative preference relation of student s1, �′s1 : c1, c3, ∅. Note that this

is an improvement for school c1 over �s1 . However, the TTC outcome under the preference

30In Proposition 2, we implicitly assume that students report true preferences. The Boston mechanism is
not strategy-proof, so it is of interest to analyze whether the result holds even when students are strategic.
As mentioned in the Remark in Section 3.2, Ergin and Sönmez (2006) show that the set of Nash equilib-
rium outcomes under the Boston mechanism coincides with the set of stable matchings. By this fact and
Proposition 1, it follows that the Boston mechanism also respects improvements of school quality in terms
of enrollment when students play Nash equilibria.
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profile (�′s1 ,�−s1) is (
c1 c2 c3 c4

s1 s2 s3 s4

)
,

and so c1 obtains strictly fewer students.

The results on respecting improvements in large markets suggest a sense in which stable

mechanisms provide better incentives for schools to improve than the TTC mechanism. In ad-

dition to that, the results in this section provide another, similar case for stable mechanisms,

particularly the student-optimal stable mechanism, in contrast to the TTC mechanism.

5.2 Respecting Improvements of School Quality for Desirable Stu-

dents

Respecting improvements of school quality requires that a mechanism respects all possible

improvements. However, it may be socially beneficial for schools to differentiate and offer

different educational experiences to different students; for instance, a school may focus on

either math and science, music, or vocational training. If so, then it may be sufficient that

a school obtains a (weakly) more preferred set of students when a desirable student, i.e. a

student with a characteristic that school values, ranks that school more highly.31 One possible

definition of a desirable student in this context is simply a student that the school prefers

to one of its current students. Hence, we formalize the notion of respecting improvements of

school quality for desirable students with the following defintion.

Definition 6. A mechanism ϕ respects improvements of school quality for desirable

students at the school preference profile �C if the following condition is satisfied: Consider

any c ∈ C and student preference profiles �S and �′S such that

(1) �′S is an improvement for school c over �S, and

(2) if |ϕc(�C ,�S)| = qc, for any s such that s̄ �c s for every s̄ ∈ ϕc(�C ,�S), �′s is the

same as �s.

Then, ϕc(�C ,�′S) %c ϕc(�C ,�S) holds.

In the above definition, we consider a change of student preferences where a school im-

proves in the ranking of students, each of whom is preferred to a current student, while

31Here we assume that school preferences truly reflect their intrinsic preferences, as opposed to being
priorities set by law.
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remaining unchanged in other students’ rankings. We say that a mechanism respects im-

provements of school quality for desirable students if the school always obtains a weakly

better set of students as a result of such a change.32 Clearly, if a mechanism respects im-

provements of school quality, then it also respects improvements for desirable students. In

this sense, respecting improvements for desirable students is a weaker notion than respecting

improvements.

Even if we adopt this alternative criterion, the impossibility result for the compatibility

of stability and respecting improvements in general markets continues to hold: In Example

1, add another student ŝ with �ŝ: c, ∅ and change school preferences to �c: s, s̄, ŝ, ∅ and

�c̄: s̄, s, ŝ, ∅. This modified example shows the desired impossibility.

Furthermore, both the TTC and the Boston mechanisms do not respect improvements

for desirable students in general markets. For the Boston mechanism, consider the following

example:

Example 3. Let S = {s1, s2, s3, s4}, C = {c1, c2}. The capacity of school c1 is 2 while the

capacity of school c2 is 1. Preferences of students and schools are as follows:

�s1 : c2, c1, ∅, �c1 : s1, s2, s3, s4, ∅,

�s2 : ∅, c1, c2, �c2 : s4, s1, s2, s3, ∅,

�s3 : c1, ∅, c2,

�s4 : c2, ∅, c1.

Under this preference profile �, the Boston mechanism ϕB produces the following matching:

ϕB(�) =

(
c1 c2 ∅

{s1, s3} s4 s2

)
.

Now consider an alternative preference relation for student s2, �′s2 : c1, ∅, c2. Note that this

is an improvement for school c1 over �s2 and s2 �c1 s3 ∈ ϕB(�). However, the Boston

mechanism outcome under preference profile (�′s2 ,�−s2) is

ϕB(�′s2 ,�−s2) =

(
c1 c2 ∅

{s2, s3} s4 s1

)
.

Hence, the Boston mechanism does not respect improvements for desirable students.

For the TTC mechanism, see Proposition 8 below, which implies that the TTC mechanism

32For schools with unfilled capacity, every student is considered a desirable student.
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does not respect improvements for desirable students.

Given these negative results, a natural question is, as in the case of the original concept

of respecting improvements, whether these mechanisms respect improvements for desirable

students in large markets. First of all, it is clear that the result for stable mechanisms in large

markets remains true since respecting improvements (for any students) implies respecting

improvements for desirable students. For the Boston and the TTC mechanisms, as in the

case with our original criterion of respecting improvements of school quality, we show that

neither of them respects improvements for desirable students even in large markets. Let

α̂c(Γ̃, ϕ) be the probability that the realized preference profile � has the property that there

exists a student preference profile �′S such that �′S is a disimprovement for c over �S with

the properties (1) and (2) in Definition 6, and ϕc(�C ,�′S) �c ϕc(�C ,�S). We say that a

mechanism ϕ approximately respects improvements of school quality for desirable

students in large markets if, for any sequence of random markets (Γ̃n)n∈N that is regular

and sufficiently thick, for any ε > 0, there exists an integer m such that, for any random

market Γ̃n in the sequence with n > m and any c ∈ Cn, we have that α̂c(Γ̃
n, ϕ) < ε.

Proposition 4. The Boston mechanism does not approximately respect improvements of

school quality for desirable students in large markets.

Proof. See the Appendix.

Proposition 5. The top trading cycles mechanism does not approximately respect improve-

ments of school quality for desirable students in large markets.

Proof. See the Appendix.

Hence, even if we adopt the alternative, weaker criterion of respecting improvements

for desirable students, the implications obtained by using our original criterion, respecting

improvements of school quality (for all students), are unchanged.

In the above definition of respecting improvements of school quality for desirable students,

a student is regarded as desirable for a school if that student is more desirable than some

student to whom the school is originally matched with (before improvements occur). A

more stringent definition of the desirability of a student is also possible. That is, a student

is considered as desirable for a school if that student is more desirable than every student to

whom the school is originally matched with. This alternative definition of the desirability of

a student leads us to the following even weaker notion of respecting improvements of school

quality for desirable students.
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Definition 7. A mechanism ϕ respects improvements of school quality for very

desirable students at the school preference profile �C if the following condition is satisfied:

Consider any c ∈ C and student preference profiles �S and �′S such that

(1) �′S is an improvement for school c over �S, and

(2) for any s such that s̄ %c s for some s̄ ∈ ϕc(�C ,�S), �′s is the same as �s.

Then, ϕc(�C ,�′S) %c ϕc(�C ,�S) holds.

It is easy to see that if a mechanism respects improvements of school quality for desirable

students, then it also respects improvements for very desirable students. As the following

results demonstrate, if we use respecting improvements for very desirable students as the

criterion of promoting competition, a clear difference between the student-optimal stable

mechanism and the TTC mechanism emerges.

Proposition 6. For any school preference profile, both the student-optimal and school-

optimal stable mechanisms respect improvements of school quality for very desirable students.

Proof. See the Appendix.

Note that this result implies that “undesirable” students are the most likely to be harmed

by schools choosing to become less attractive in order to obtain a better set of students. As

these “undesirable” students may be low-achieving or otherwise at-risk students, this result

implies that the argument for choosing mechanisms that respect improvements of school

quality may be particularly compelling if policymakers are particularly concerned about

low-achieving students.

Remark. There exists a stable mechanism that does not respect improvements of school

quality for very desirable students at all school preference profiles. To see this point, consider

the following example: Let S = {s1, s2, s3}, C = {c1, c2, c3}. The capacity of each school is

1. Preferences of students and schools are as follows:

�s1 : c1, c2, c3, ∅, �c1 : s1, s2, s3, ∅,

�s2 : c1, c3, c2, ∅, �c2 : s1, s2, s3, ∅,

�s3 : c1, c2, c3, ∅, �c3 : s1, s3, s2, ∅.

Now consider an alternative preference relation of student s1, �′s1 : c1, c3, c2, ∅. Under each

of preference profiles � and (�′s1 ,�−s1), there are two stable matchings,

µ =

(
c1 c2 c3

s1 s2 s3

)
, µ′ =

(
c1 c2 c3

s1 s3 s2

)
.
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Consider a stable mechanism ϕ such that ϕ(�) = µ and ϕ(�′s1 ,�−s1) = µ′. Then, (�′s1 ,�−s1)
is an improvement for school c3 over � and s1 �c3 s3 = ϕc3(�), but ϕc3(�) = s3 �c3 s2 =

ϕc3(�′s1 ,�−s1), showing that ϕ does not respect improvements for very desirable students.

Furthermore, the Boston mechanism also respects improvements of school quality for

very desirable students.

Proposition 7. For any school preference profile, the Boston mechanism respects improve-

ments of school quality for very desirable students.

Proof. Obvious by definition of the algorithm.

However, the TTC mechanism does not satisfy this criterion.

Proposition 8. The TTC mechanism does not respect improvements of school quality for

very desirable students at all school preference profiles.

Proof. This can be shown by using a slight modification of the proof of Proposition 3 that

the TTC mechanism does not respect improvements of school quality in terms of enrollment

at all school preference profiles. Specifically, in the counterexample in the proof of Proposi-

tion 3, additionally assume that {s2, s3} �c1 {s1}. (Note that this does not contradict the

responsiveness assumption on �c1 .) Then, it is easy to see that this modified counterex-

ample provides a school preference profile at which the TTC mechanism does not respect

improvements for very desirable students.

The implication of the above results is summarized as follows: If we adopt an alternative,

possibly more plausible notion of respecting improvements, i.e., respecting improvements of

school quality for (very) desirable students, then we still find a strong contrast between (the

student-optimal and school-optimal) stable mechanisms and the TTC mechanism in terms

of their incentive properties for schools.

6 Discussion

6.1 Conditions on Preferences for Respecting Improvements

As mentioned in Section 3.3, given that the mechanisms we consider do not respect improve-

ments at every school preference profile, a natural question is whether there exist conditions

on the school preference profile �C such that a stable or Pareto efficient mechanism respects

improvements at every school preference profile satisfying the conditions. Let r`(�c) be the

student who is `-th ranked in �c.
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Definition 8. A school preference profile �C is virtually homogeneous if r`(�c) = r`(�c̄)
for all c, c̄ ∈ C and ` > min{qĉ|ĉ ∈ C}.

This condition requires that the same student should be the `-th preferred student for

all schools for every ` that is larger than the minimum of school capacities. As the name

suggests, virtual homogeneity allows for almost no variation in preferences over individual

students among different schools. To illustrate this condition, consider a special case in

which each school has only one seat, that is, qĉ = 1 for all ĉ ∈ C. Then r`(�c) = r`(�c̄) for

all c, c̄ ∈ C and ` ≥ 2 and hence for ` = 1 as well. This means that preferences over students

are exactly identical between any pair of schools.

When school capacities are larger than one, virtual homogeneity allows for slight varia-

tions in school preferences. Still, any allowed variation involves only the top min{qĉ|ĉ ∈ C}
students. Such a student is admitted to any school whenever she applies to it in any stable

mechanism, so how highly she is ordered within those top students does not affect the alloca-

tion as long as a stable mechanism is employed. In other words, the apparent heterogeneity

in school preferences involving only the top min{qĉ|ĉ ∈ C} students is irrelevant for the pur-

pose of choosing an allocation from the set of stable allocations.33 We now characterize the

set of school preference profiles under which there exists a stable mechanism that respects

improvements of school quality.

Proposition 9. There exists a stable mechanism that respects improvements of school quality

at �C if and only if one of the following conditions is satisfied:

(1) The school preference profile �C is virtually homogeneous.

(2) For every school c ∈ C, the capacity qc (associated with �c) is one.

Proof. See the Appendix.

While the proposition provides a complete characterization of when a stable mechanism

respects improvements of school quality, the main significance of this result is the necessity

direction: Virtually homogenous preferences are necessary for a stable mechanism to respect

improvements of school quality (when at least one school has a capacity greater than one).

Given that virtual homogeneity is an extremely restrictive condition which is rarely satisfied

in practice, this result suggests that school preferences in practice are unlikely to exclude

the possibility that stable mechanisms may provide perverse incentives for schools to lower

their qualities and divert some students’ demand for those schools.

33On the other hand, however, the variation in school preferences over students may affect school prefer-
ences over allocations even when preferences are virtually homogeneous.
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The proof of Proposition 9 is quite involved, but the intuition is straightforward: If

preferences are not virtually homogenous and at least one school has a capacity greater than

one, then with some work one can construct a preference profile of the students such as

that in Example 1. On the other hand, when preferences are virtually homogenous, any

stable mechanism is equivalent to a serial dictatorship where students choose school seats in

the order that they are preferred by the schools. Such a serial dictatorship clearly respects

improvements of school quality. Finally, if the capacity is one for every school, then the

school-optimal stable mechanism is the unique stable mechanism that respects improvements

of school quality by Theorem 5 in Balinski and Sönmez (1999).

We now show that the set of preference profiles for which a Pareto efficient mechanism

respects improvements of school quality is very similar to the set of preference profiles for

which a stable mechanism respects improvements of school quality, which is specified in

Proposition 9.

Proposition 10. There exists a mechanism that is Pareto efficient for students and respects

improvement of school quality at �C if and only if �C is virtually homogeneous.

Proof. See the Appendix.

As virtual homogeneity is a very strong restriction on school preferences, the significance

of Proposition 10 lies in the necessity part that virtually homogenous preferences are required

for a Pareto efficient mechanism to respect improvements of school quality. This conclusion

implies that Pareto efficient mechanisms may very often provide perverse incentives for

schools to lower their qualities and divert some students’ demand for those schools.

The proof of Proposition 10 is similar to that of Proposition 9 in spirit, though the

technical details differ substantially: if preferences are not virtually homogenous, then it is

possible to construct a preference profile for the students such as that in Example 2. On

the other hand, when preferences are virtually homogenous, the serial dictatorship where

students choose in the order that they are preferred by the schools is both Pareto efficient

and respects improvements of school quality.

Remark. When the virtual homogeneity condition in Proposition 10 is satisfied, the top

trading cycles mechanism is an example of a mechanism that is Pareto efficient for students

and respects improvements of school quality. If a school preference profile is virtually ho-

mogeneous, the top trading cycles mechanism coincides with a serial dictatorship using an

arbitrary school’s preference profile as the priority order. As explained above, such a se-

rial dictatorship respects improvements of school quality. On the other hand, the Boston

mechanism does not respect improvements even when �C is virtually homogeneous.34 An

34For an example showing this point, see Appendix A.2.
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implication of these results is that the student-optimal stable mechanism respects improve-

ments for a wider class of school preference profiles than the TTC mechanism, and the TTC

mechanism respects improvements for a wider class of school preference profiles than the

Boston mechanism.

Remark. Virtual homogeneity is stronger than acyclicity by Ergin (2002) and all of its

variants proposed in the literature: strong x-acyclicity by Haeringer and Klijn (2009), the

stronger notions of acyclicity by Kesten (2006), and essential homogeneity by Kojima (2011).

Note that even these acyclicity-like conditions have been considered to be so restrictive that

it seems difficult to find any real-life cases where the conditions are satisfied. This fact

demonstrates how restrictive virtual homogeneity is. For a more detailed explanation on the

relationship between virtual homogeneity and (the variants of) acyclicity, see Appendix A.3.

6.2 Respecting Improvements of Student Quality

While we have considered competitive pressures on schools to improve, it is also important

that a student not have incentives to make schools rank her lower in order to obtain a more

preferred school. In addition, it would be natural to suspect that there is a tradeoff between

providing incentives for schools to improve and doing so for students. In this section, we

consider whether the school choice mechanisms considered in this work respect improvements

of student quality.

Definition 9. A mechanism ϕ respects improvements of student quality at the student

preference profile �S if, for all s ∈ S and school preference profiles �C and �′C , if �′C is an

improvement for student s over �C , then ϕs(�′C ,�S) %s ϕs(�C ,�S).35

This definition is analogous to that for respecting improvements of school quality. A

mechanism respects improvements of student quality if whenever a student’s ranking im-

proves in schools’ preferences, that student obtains a weakly better placement. We now

show that the student optimal stable mechanism, the Boston mechanism, and the TTC

mechanism all respect improvements of student quality.

In addition to being a building block for Theorem 3, Lemma 1 allows us to easily prove

the following corollary, which was first shown by Balinski and Sönmez (1999).

35Analogously to the definition of an improvement for a school, a preference profile �C is an improvement
for student s over preference profile �′C if, for all c ∈ C,

(1) For all s̄ ∈ S, if s �c s̄, then s �′c s̄, and

(2) For all s̄, ŝ ∈ S \ {s}, s̄ �′c ŝ if and only if s̄ �′c ŝ,

and the capacity associated with �′c is equal to that with �c.
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Corollary 1. The unique stable mechanism that respects improvements of student quality at

every student preference profile is the student-optimal stable mechanism.

Proof. By Lemma 1, a stable mechanism respects improvements of student quality if and

only if it is strategy-proof for students. This fact, and the result by Alcalde and Barberà

(1994) that the student-optimal stable mechanism is the only stable mechanism that is

strategy-proof for students, complete the proof.

The Boston mechanism also respects improvements of student quality. Intuitively, when

a student improves his ranking, at each step of the algorithm in the Boston mechanism, the

student is more likely to be kept by the school. Hence the outcome for the student must

become weakly better when the student’s ranking improves.

Proposition 11. The Boston mechanism respects improvements of student quality at every

student preference profile.

The TTC mechanism also respects improvements of student quality. At each step of

the algorithm in the TTC mechanism, a school is more likely to point at a student if that

student is ranked higher. Hence, at each step of the algorithm, a higher-ranked student will

have more schools pointing (directly or indirectly) at her, and so she will have a greater set

of schools to choose from, and therefore obtain a weakly better outcome.

Proposition 12. The top trading cycles mechanism respects improvements of student quality

at every student preference profile.

7 Conclusion

In this work, we considered how the design of a school choice mechanism affects the incentives

of schools to improve their educational quality. We first defined the concept of respecting

improvements of school quality, which requires that the outcome of a mechanism becomes

weakly better for a school whenever that school becomes more preferred by students. No

stable mechanism (such as the student-optimal stable mechanism) or mechanism that is

Pareto efficient for students (such as the Boston and top trading cycles mechanisms) respect

improvements of school quality. However, as the size of the school district grows, any stable

mechanism approximately respects improvements; in contrast, the Boston and the TTC

mechanisms do not even approximately respect improvements in large markets. Similar

conclusions were obtained with respect to other criteria: Respecting improvements in terms

of enrollment and for (very) desirable students. The main results are summarized in Table 1

(an exhaustive list of our results is in Table 2 in the Appendix). These results suggest that
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SOSM Boston TTC
RI in General Markets × × ×

RI by Desirable Students in General Markets × × ×
RI in Large Markets X × ×

RI for Desirable Students in Large Markets X × ×
RI in Terms of Enrollment X X ×

Table 1: Summary of the Main Results. RI stands for respect improvements.

the student-optimal stable mechanism may be a better school choice mechanism compared

to the Boston and the TTC mechanisms if the goal of public school choice is to “increase

excellence by increasing choice” (National Governors’ Association, 1991).

We regard this paper as one of the first attempts to use the analytical tools of market

design to study the effects of different school choice mechanisms on improving the quality of

public schooling. As such, there are a number of promising avenues of future research. First,

if data on submitted preferences in real school systems is available, it would be possible to

analyze how often schools in practice are better off when less preferred by certain students,

i.e. how often schools have incentives to discourage student interest. Second, and more

ambitiously, empirical work could quantify the effect of different school choice mechanisms

on the quality of a public school system and its rate of improvement. We would further

suggest that empirical work in this area also concentrate on the distibution of outcomes:

As discussed at the end of Section 4, the Boston and TTC mechanisms provide incentives

for schools to make themselves less attractive to “less desirable” students. As these “less

desirable” students are likely to be students who are already low-achieving, members of a

disadvantaged minority group, or have special needs, the use of the Boston and top trading

cycles mechanisms may further disadvantage these students.

Another important research direction would be to relate the current study, which focuses

on public school choice, with other forms of school choice, such as vouchers and charter school

systems.36 Potentially fruitful questions include the following ones: Which system provides

the best incentives for schools to improve? How does the form of school competition affect the

quality of the educational experience for different students? What sort of mechanisms should

be used to allocate students to charter schools and/or schools accepting vouchers? Answering

these questions will require a much more stylized model than the current general matching-

theoretic one, but we believe that answering these questions is crucial to the continuing

36Although charter school admissions could be integrated into the public school choice programs in princi-
ple, admissions in charter schools are usually operated independently from other public schools in the United
States.
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debate over public education.
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A Appendix

A.1 Proofs

A.1.1 Proof of Theorem 3

We begin by proving Lemma 1, which we restate here for convenience. This lemma shows

that there is a sense in which the violation of respecting improvements is equivalent to the

manipulability by preference misreporting of schools for any stable mechanism.

Lemma 1. Let ϕ be a stable mechanism.

(1) Suppose that the preference profile � and student preference profile �′S are such that �′S
is a disimprovement for c over �S and ϕc(�′S,�C) �c ϕc(�) for a school c ∈ C. Then

there exists a (reported) preference relation �′′c for c such that ϕc(�′′c ,�−c) �c ϕc(�).

(2) Suppose that there exists a (reported) preference relation �′′c for c such that ϕc(�′′c ,�−c)
�c ϕc(�). Then there exists a student preference profile �′S such that �′S is a disim-

provement for c over �S and ϕc(�′S,�C) �c ϕc(�).

Proof. We prove each part in order:

(1) Suppose ϕc(�′) �c ϕc(�). Consider a preference relation �′′c of school c ∈ C such that

s �′′c ∅ if and only if s ∈ ϕc(�′). Then

Claim 1. ϕ(�′) is stable under (�′′c ,�−c).

Proof. It is obvious that ϕ(�′) is indivisually rational at (�′c,�−c). To show that there

is no blocking pair of ϕ(�′) at (�′c,�−c), consider the following cases.

(a) There are no blocking pairs of the form (s, c), that is, blocking pairs involving

school c, because ∅ �′′c s for any s /∈ ϕc(�′) by construction of preference relation

�′′c .

(b) Suppose that there is a blocking pair (s, c̄) at (�′′c ,�−c) with c̄ 6= c and s ∈ ϕc(�′).
Then c̄ �s c and, since �′ is a disimprovement for school c over �, it follows that

c̄ �′s c. This and the fact that (s, c̄) is a blocking pair of ϕ(�′) at (�′′c ,�−c)
implies that (s, c̄) is a blocking pair of ϕ(�′) at �′, which is a contradiction to

the assumption that ϕ is a stable mechanism.

(c) Suppose that there is a blocking pair (s, c̄) at (�′′c ,�−c) with c̄ 6= c and s /∈ ϕc(�′).
Then, c̄ �s ϕs(�′) if and only if c̄ �′s ϕs(�′) by definition of a disimprovement,
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c̄ 6= c, and ϕs(�′) 6= c. Also, the preferences of c̄ are identical under �′ and (�′c
,�−c). Therefore (s, c̄) is a blocking pair of ϕ(�′) at �′, which is a contradiction

to the assumption that ϕ is a stable mechanism.

This completes the proof of Claim 1.

Now note that by a version of the rural hospital theorem (McVitie and Wilson, 1970;

Roth, 1984, 1986; Gale and Sotomayor, 1985a,b) and Claim 1, we have that

|ϕc(�′′c ,�−c)| = |ϕc(�′)|.

But since s �′′c ∅ if and only if s ∈ ϕc(�′) by construction of �′c, this equality implies

that

ϕc(�′′c ,�−c) = ϕc(�′).

This relation and the hypothesis that ϕc(�′) �c ϕc(�) complete the proof.

(2) Suppose ϕc(�′′c ,�−c) �c ϕc(�). Consider a preference profile �′ such that preferences

of students outside ϕc(�′′c ,�−c) drop school c from their list but all preferences are

unchanged otherwise: Formally, define �′≡ (�′i)i∈S∪C by

(a) For any s ∈ S \ ϕc(�′′c ,�−c), (i) ∅ �′s c and (ii) c̄ �′s ĉ ⇐⇒ c̄ �s ĉ for any

c̄, ĉ ∈ C ∪ {∅} \ {c}.

(b) �′i=�i for any i ∈ C ∪ ϕc(�′′c ,�−c).

Claim 2. ϕ(�′′c ,�−c) is stable under �′.

Proof. It is obvious that ϕ(�′′c ,�−c) is individually rational at �′. To show that there

is no blocking pair of ϕ(�′′c ,�−c) at �′, consider the following cases.

(a) There are no blocking pairs of the form (s, c), that is, blocking pairs involving

school c, because ∅ �′s c for any s ∈ S \ ϕc(�′′c ,�−c) by construction of the

preference relation �′.

(b) Suppose that there is a blocking pair (s, c̄) at �′ with c̄ 6= c and s ∈ ϕc(�′′c ,�−c).
Then c̄ �s c and, since �′s is identical to �s by construction, we obtain c̄ �′s c.
This and the fact that (s, c̄) is a blocking pair of ϕ(�′′c ,�−c) at �′ implies that

(s, c̄) is a blocking pair of ϕ(�′′c ,�−c) at (�′′c ,�−c), which is a contradiction to

the assumption that ϕ is a stable mechanism.
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(c) Suppose that there is a blocking pair (s, c̄) at �′ with c̄ 6= c and s /∈ ϕc(�′′c
,�−c). Then, c̄ �s ϕs(�′′c ,�−c) if and only if c̄ �′s ϕs(�′′c ,�−c) by definition of

a disimprovement, c̄ 6= c, and ϕs(�′′c ,�−c) 6= c. Also, the preferences of c̄ are

identical under �′ and (�′′c ,�−c). Therefore (s, c̄) is a blocking pair of ϕc(�′′c
,�−c) at (�′′c ,�−c), which is a contradiction to the assumption that ϕ is a stable

mechanism.

This completes the proof of Claim 2.

Now note that by a version of the rural hospital theorem (McVitie and Wilson, 1970;

Roth, 1984, 1986; Gale and Sotomayor, 1985a,b) and Claim 2, we have

|ϕc(�′)| = |ϕc(�′′c ,�−c)|.

But since c �′s ∅ if and only if s ∈ ϕc(�′′c ,�−c) by construction of �′, this equality

implies that

ϕc(�′) = ϕc(�′′c ,�−c).

This relation and the hypothesis that ϕc(�′′c ,�−c) �c ϕc(�) complete the proof.

Claim 3. Suppose that the preference profile � has the property that there exists another

preference profile �′ such that �′ is a disimprovement over � for c while ϕc(�′) �c ϕc(�).

Then there exists a preference relation �∗c of c such that ϕSc (�∗c ,�−c) �c ϕSc (�).

Proof. By Lemma 1, there exists �′′c such that ϕc(�′′c ,�−c) �c ϕc(�). By the property by

Pathak and Sönmez (2011) that, if stable mechanism ϕ is manipulable by a school at a given

preference profile of students and schools, then the student-optimal stable mechanism ϕS is

manipulable by the same school at the same preference profile. Thus, there exists �∗c (which

may be different from �′′c ) such that ϕSc (�∗c ,�−c) �c ϕSc (�).

To prove the theorem, suppose that the preference profile �, realized from random market

Γ̃n, has the property that there exists another preference profile �′ such that �′ is a disim-

provement over � for c while ϕc(�′) �c ϕc(�). Then by Claim 3, there exists a preference

relation �∗c of c such that ϕSc (�∗c ,�−c) �c ϕSc (�).

Under the assumptions of regularity and sufficient thickness, Lemmata 1, 3, and 10 of

Kojima and Pathak (2009) imply that there exists a constant γ such that the following

property holds: There exists n0 such that, for any Γ̃n with any n > n0 and any c ∈ Cn, the

probability that, under the realized preference profile �, there exists a reported preference
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relation �′
c such that ϕSc (�′c,�−c) �c ϕSc (�) is at most γ/E[VT (n)]. By the sufficient thick-

ness assumption, E[VT (n)] → ∞.37 This fact and the conclusion from the last paragraph

comple the proof.

Remark. From the last part of the proof, it is clear that the order of convergence in the

theorem is O(1/E[VT (n)]). For instance, if the sequence of random markets satisfies mod-

erate similarity as defined in Section 4.1, then the order of convergence is O(1/n) because

E[VT (n)] = O(n) by Proposition 1 of Kojima and Pathak (2009).38

Remark. As mentioned in Section 4.1, the conclusion of the theorem holds even without

condition (1) of regularity - so students can find any number of schools acceptable - if an

excess supply of school capacities and moderate similarity are satisfied. To see this point, note

first that the proof of Lemma 5 of Kojima and Pathak (2009) shows that, given any result

of ϕS under truthtelling, the conditional probability that a school can profitably manipulate

ϕS is O(1/VT (n)). Under an excess supply of school capacities and moderate similarity, it

is clear that VT (n) = O(n) (for any sufficiently large T ) for any realization of preferences

because there are at least λn vacant school seats, and hence at least (λ/q̂)n schools with at

least one vacant seat, in any matching. Thus the (unconditional) probability that a school

can profitably manipulate ϕS is O(1/n). This and the arguments of the above proof establish

the conclusion of the theorem.

A.1.2 Proof of Theorem 4

Consider a sequence of random markets where there are n schools and 2n students, and qc = 1

for every school c. Assume that preferences of all students are generated according to the

procedure described in Section 4.1 associated with the uniform distribution over all schools

and k = 2. Moreover assume that school preferences over individual students are drawn

identically and independently from the uniform distribution over all preferences for students

such that all students are acceptable. These assumptions guarantee that the regularity and

sufficient thickness conditions are satisfied.

Given n, fix an arbitrary school c and let Event 1 be the event that there is exactly one

37Note that condition (i) in the definition of regularity of a sequence of random markets is weaker than
that used by Kojima and Pathak (2009) in that they require that kn = k for all n. It is easy to extend their
result to our more general setting, as claimed in footnote 3 in Kojima and Pathak (2009).

38Kojima and Pathak (2009) show E[VT (n)] = O(n) for a slightly more general class of distributions,
which they call “nonvanishing proportion of popular colleges” in their Appendix A.3. Moderate similarity
corresponds to the special case with a = 1 in their class of distributions.
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student who prefers that school c most. The probability of Event 1 is(
2n

1

)
× 1

n
×
(

1− 1

n

)2n−1

= 2n× 1

n
×
(

1− 1

n

)2n−1

.

This expression converges to 2/e2 as n approaches infinity, where e is the basis of the natural

logarithm.39 Therefore, for any sufficiently large n, the probability of Event 1 is at least,

say, 1/e2. Denote by s the unique student who prefers c most.

Since there are 2n students and n school seats, there are at least n students who are not

matched in the first step of the algorithm of the Boston mechanism. Since k = 2, that is,

each student finds at least two schools to be acceptable, each of these students applies to

a school in the second step of the algorithm. Therefore, the conditional probability of the

event (call this event Event 2) that there is at least one student who lists c as her second

choice and hence applies to it in the second step of the mechanism is at least

1−
(

1− 1

n− 1

)n
.

As n approaches infinity, this expression converges to 1
e2 , so for any sufficiently large n, the

conditional probability of Event 2 given Event 1 is at least, say, 1
2e2 .

Finally, conditional on Events 1 and 2, the probability that at least one of the applicants

to school c in the second step of the algorithm is preferred to s by school c (call this event

Event 3) is at least one half: To see this point, observe that the conditioning events place

no restriction on how students are ranked by school c, so for any student s̄, the conditional

probability that s̄ is more preferred to s by c is exactly one half, which provides a lower bound

for the conditional probability of Event 3 given Events 1 and 2. Thus the unconditional joint

probability that Events 1, 2, and 3 happen is at least (1/e2)×(1/2e2)×(1/2) = 1/4e4, which

is independent of n and bounded away from below by zero.

Assume that the realization of preferences is such that Events 1, 2, and 3 hold. Then,

under this preference profile, school c is matched with student s. Consider the following

disimprovement for c: student s declares c to be unacceptable while keeping the relative

rankings of all other schools unchanged, and preferences of all other students are unchanged.

39 The computation of this limit is as follows:

2n× 1

n
×
(

1− 1

n

)2n−1

= 2×
((

1− 1

n

)n)2

×
(

1− 1

n

)−1

→ 2× (e−1)2 × 1 = 2/e2,

as n → ∞, where we have used a well-known formula limn→∞

(
1− 1

n

)n
= e−1. This formula is used in

similar calculations of limits in this paper.
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Under this preference profile, there is no applicant to c in the first step given Event 1, and

there is at least one applicant to c in the second step of the algorithm given Event 2. Thus

c is matched with the most preferred student among those who apply in the second step.

By Event 3, that student is preferred to s by c. Since we have already seen that the joint

probability of Events 1, 2, and 3 is bounded from below by zero, we have shown that the

conclusion of Theorem 3 does not hold in this case, completing the proof.

A.1.3 Proof of Theorem 5

Consider a case where there are n schools and n students, and qc = 1 for every school c.

Assume that preferences of all students are generated according to the uniform distribution

over all schools with k = 1. Moreover assume that school preferences are drawn identically

and independently from the uniform distribution over all preferences over students such that

all students are acceptable. These assumptions guarantee that the regularity and sufficient

thickness conditions are satisfied.

Let n ≥ 2. Take an arbitrary school a and let Event 1 be the event that there are exactly

two students who prefer a best. The probability of Event 1 is(
n

2

)
× 1

n2 ×
(

1− 1

n

)n−2

=
n(n− 1)

2
× 1

n2 ×
(

1− 1

n

)n−2

.

As n approaches infinity, this expression converges to 1/2e, so for any sufficiently large n,

the probability of Event 1 is at least, say, 1/3e.

Under Event 1, there are exactly two students who prefer a best. Call these students h

and l. Given Event 1, consider the conditional probability of the event (call this event Event

2) that except school a, there are exactly 1 school who gives the first rank to h and exactly

1 school who gives first rank to l. The conditional probability is given by

(n− 1)(n− 2)× 1

n2 ×
(

1− 2

n

)n−3

.

As n approaches infinity, this expression converges to 1
e2 , so for any sufficiently large n, the

conditional probability of Event 2 given Event 1 is at least, say, 1
2e2 .

Denote the schools identified under Event 2 by bh and bl, respectively. Given Events 1

and 2, consider the conditional probability of the event (call this event Event 3) that except

h and l, there is exactly 1 student who gives first rank to bh and exactly one student who
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gives first rank to bl. The conditional probability is given by

(n− 2)(n− 3)× 1

(n− 1)2 × (1− 2

(n− 1)
)n−4.

As n approaches infinity, this expression converges to 1
e2 , so for any sufficiently large n, the

conditional probability of Event 3 given Events 1 and 2 is at least, say, 1
2e2 .

Denote the schools identified in Event 3 by ih and il, respectively. Given Events 1, 2,

and 3, the conditional probability of the event (call this event Event 4) that either of ih and

il has a higher ranking than both h and l in school a’s preference relation is 1
2
. (Note that

Events 1, 2, and 3 do not impose any restriction on the rankings of h, l, ih, and il in a’s

preference relation.) Given the above calculations, the joint probability of Events 1, 2, 3,

and 4 is bounded from below by zero (at least 1/24e5) for any sufficiently large n.

Given Event 1, school a is matched with h or l with conditional probability 1 by the

assumption that k = 1. In addition, given Events 1, 2, 3, and 4, the following event occurs

with conditional probability 1: a is matched with h or l while being contained in a cycle

involving another agent than a, h, and l. Since the above events are symmetric for h and

l, this means that a is matched with l with conditional probability 1/2. Therefore, a is

matched with l at least with unconditional probability 1/48e5, and thus, a is matched with

h with a probability that is bounded away from above by 1.

Now additionally assume that h has a higher ranking than l in a’s preference relation.

(Given the above argument, the joint probability of this event and Events 1-4 is bounded away

from below by zero for any sufficiently large n.) Then consider the following disimprovement

for a in l’s preference relation: l declares all schools unacceptable. This change of preferences

leads to the situation where h is the only student who ranks a as an acceptable school, and

h ranks a as her most preferred school, which in turn implies that after the disimprovement

for a in l’s preference relation, a has to be matched with h with probability 1. Since a is

matched with h only with a probability bounded from above by 1 before the disimprovement,

the disimprovement for a makes a strictly better off with a probability that is bounded from

below by zero, completing the proof.

A.1.4 Proof of Proposition 1

Suppose that �′ is an improvement over � for c. Assume for contradiction that |ϕc(�)| >
|ϕc(�′)| for some stable mechanism ϕ. Without loss of generality assume that there exists

one student s ∈ S and a school c̄ such that the only difference between � and �′ is that the

ranking between c and c̄ is exchanged for student s. Formally, assume that c̄ �s c, c �′s c̄,
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a �s b if and only if a �′s b for any a, b ∈ C \ {c, c̄} ∪ {∅}, and �′−s=�−s.
Since |ϕc(�)| > |ϕc(�′)| by assumption, by the rural hospital theorem it follows that

ϕ(�′) is not stable under preference profile �. Thus there is a blocking pair of ϕ(�′) under

�. First, note that s is part of the blocking pair because she is the only agent whose

preferences are different between � and �′. Moreover, it should be the case that s ∈ ϕc(�′)
and the only blocking pair is (s, c̄) because the only change from �′s to �s is that c̄ is more

preferred to c at �s while c is more preferred to c̄ at �′s. Now satisfy this blocking pair

to obtain a new matching. If |ϕc̄(�′)| < qc̄, then the resulting matching is stable at �.

If |ϕc̄(�′)| = qc̄, then reject the least preferred student by c̄ in ϕc̄(�′), and let him block

with his most preferred school that can form a blocking pair with him, and so on.40 This

procedure terminates in a finite number of steps, leading to a matching µ that is stable under

�. Moreover, if c is part of the blocking pair in this algorithm, then the algorithm stops

at that step, because no student is rejected by c as there is a vacancy. But the resulting

matching µ has the property that |µc| ≤ |ϕc(�′)| < |ϕc(�)| (note that s ∈ ϕc(�′) by the

above discussion), which is a contradiction to the rural hospital theorem. This completes

the proof.

A.1.5 Proof of Proposition 2

Let c ∈ C, � be a preference profile, and �′s is an improvement over �s for c. Recall

that ϕB denotes the Boston mechanism. We will show that |ϕBc (�′s,�−s)| ≥ |ϕBc (�)|. If

|ϕBc (�′s,�−s)| = qc, then the conclusion trivially holds. Thus we assume |ϕBc (�′s,�−s)| < qc.

Note that unless

ϕBs (�′s,�−s) = c, ϕBs (�) 6= c, (1)

by definition of ϕB it follows that ϕB(�′s,�−s) = ϕB(�), so there is nothing to prove. Thus

we assume relation (1) in the rest of the proof.

Since ϕBs (�′s,�−s) = c and |ϕBc (�′s,�−s)| < qc, we have that

ϕBs̄ (�∅
s ,�−s) = ϕBs̄ (�′s,�−s), (2)

for every s̄ 6= s, where �∅
s is a preference relation of s that ranks ∅ as the most preferred

outcome.

Now we compare ϕB(�) and ϕB(�∅
s ,�−s). It is clear by the definition of the algorithm

that ϕBs̄ (�∅
s ,�−s) %s̄ ϕ

B
s̄ (�) for every s̄ 6= s. This fact and the fact that the matching under

40This procedure is a variant of the “vacancy chain dynamics” studied by Blum, Roth, and Rothblum
(1997).
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the Boston mechanism is individually rational imply that

|{s̄ ∈ S \ {s}|ϕBs̄ (�∅
s ,�−s) ∈ C}| ≥ |{s̄ ∈ S \ {s}|ϕBs̄ (�) ∈ C}|.

Since |{s̄ ∈ S|ϕBs̄ (�∅
s ,�−s) ∈ C}| = |{s̄ ∈ S \ {s}|ϕBs̄ (�∅

s ,�−s) ∈ C}| (because s is clearly

unmatched at ϕBs̄ (�∅
s ,�−s)), and clearly |{s̄ ∈ S \ {s}|ϕBs̄ (�) ∈ C}| ≥ |{s̄ ∈ S|ϕBs̄ (�) ∈

C}| − 1, we conclude that

|{s̄ ∈ S|ϕBs̄ (�∅
s ,�−s) ∈ C}| ≥ |{s̄ ∈ S|ϕBs̄ (�) ∈ C}| − 1. (3)

On the other hand, it is clear by definition of the Boston mechanism that |µc̄(�)| ≥
|µc̄(�∅

s ,�−s)|. Because the matching is bilateral, i.e., µs̄ = c̄ ⇐⇒ s̄ ∈ µc̄ for any matching

µ, this and relation (3) imply that there is at most one school c̄ ∈ C such that |µc̄(�
)| > |µc̄(�∅

s ,�−s)|, and for such a school, |µc̄(�∅
s ,�−s)| ≥ |µc̄(�)| − 1. In particular, we

obtain that |µc(�∅
s ,�−s)| ≥ |µc(�)| − 1. This fact and relations (1) and (2) imply that

|µc(�′s,�−s)| = |µc(�∅
s ,�−s)|+ 1 ≥ |µc(�)|, completing the proof.

A.1.6 Proof of Proposition 4

Proof. Consider a sequence of random markets where there are n schools and 3n students,

and qc = 2 for every school c. Assume that preferences of all students are generated according

to the procedure described in Section 4.1 associated with the uniform distribution over

all schools and k = 2. Moreover assume that school preferences over individual students

are drawn identically and independently from the uniform distribution over all preferences

for students such that all students are acceptable. These assumptions guarantee that the

regularity and sufficient thickness conditions are satisfied.

Given any n ≥ 2, fix an arbitrary school c and let Event 1 be the event that there are

exactly two students who prefer that school c most. The probability of Event 1 is(
3n

2

)
×
(

1

n

)2

×
(

1− 1

n

)3n−2

=
3n(3n− 1)

2
×
(

1

n

)2

×
(

1− 1

n

)3n−2

.

This expression converges to 9/2e3 as n approaches infinity, where e is the basis of the natural

logarithm. Therefore, for any sufficiently large n, the probability of Event 1 is at least, say,

1/e3. Denote by s and ŝ the students who prefer c most.

Since there are 3n students and 2n school seats, there are at least n students who are

not matched in the first step of the algorithm of the Boston mechanism. Since k = 2, that

is, each student finds at least two schools to be acceptable, each of these students applies
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for a school in the second step of the algorithm. Therefore, given Event 1, the conditional

probability of the event (call this event Event 2) that there is at least one student who lists c

as her second choice and hence applies for it in the second step of the mechanism is at least

1−
(

1− 1

n− 1

)n
.

As n approaches infinity, this expression converges to 1 − 1
e , so for any sufficiently large n,

the conditional probability of Event 2 given Event 1 is at least, say, 1− 2
e .

Finally, conditional on Events 1 and 2, the probability that at least one of the applicants

to school c in the second step of the algorithm is preferred to both s and ŝ by school c

(call this event Event 3) is at least 1/3: To see this point, observe that the conditioning

Events place no restriction on how students are ranked by school c. So, for any student s̄,

the conditional probability that s̄ is more preferred to s and ŝ by c is exactly 1/3, which

provides a lower bound for the conditional probability of Event 3 given Events 1 and 2. Thus

the unconditional joint probability that Events 1, 2, and 3 happen is at least (1/e3)× (1−
2/e) × (1/3) = (1 − 2/e)/3e3, which is independent of n and bounded away from below by

zero.

Assume that the realization of preferences is such that Events 1, 2, and 3 occur. Then,

under this preference profile, school c is matched with students s and ŝ. Without loss of

generality assume that s �a ŝ and consider the following disimprovement for c: Student

s declares c to be unacceptable while keeping the relative rankings of all other schools

unchanged, and preferences of all other students are unchanged. Under this preference

profile, the only applicant to c in the first step is ŝ by Event 1. Also, there is at least one

applicant to c in the second step of the algorithm by Event 2. Thus c is matched with

the most preferred student, say s̄, among those who apply in the second step. By Event 3,

that student is preferred to s by c. Therefore, the set of students matched with c after the

disimprovement is {s̄, ŝ}, which is preferred to {s, ŝ}, the set of students matched with c

before the disimprovement. Moreover, the improvement in the preference relation of s (from

the disimproved preferences, where s finds c unacceptable, to the improved preferences,

where s prefers c most) has properties (1) and (2) in Definition 6 of respecting improvements

for desirable students: That is, s is more preferred to ŝ by c, while ŝ is matched to c under

the preference profile after the disimprovement. Since we have already seen that the joint

probability of Events 1, 2, and 3 is bounded from below by zero, this completes the proof.
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A.1.7 Proof of Proposition 5

Proof. Consider a case where there are n schools and n students, and qc = 2 for every school

c. Assume that preferences of all students are generated according to the uniform distribution

over all schools with k = 1. Moreover assume that school preferences are drawn identically

and independently from the uniform distribution over all preferences over students such that

all students are acceptable. These assumptions guarantee that the regularity and sufficient

thickness conditions are satisfied.

Let n ≥ 6. Take an arbitrary school a and let Event 1 be the event that there are exactly

3 students who prefer a best. The probability of Event 1 is(
n

3

)
× 1

n3 ×
(

1− 1

n

)n−3

=
n(n− 1)(n− 2)

3× 2
× 1

n3 ×
(

1− 1

n

)n−3

.

As n approaches infinity, this expression converges to 1/6e. Thus, for any sufficiently large

n, the probability of Event 1 is at least, say, 1/7e.

Under Event 1, there are exactly 3 students who prefer a best. Call these students h,

m and l. Given Event 1, consider the conditional probability of the event (call this event

Event 2) that except school a, there is exactly 1 school that gives the first rank to h, exactly

1 school that gives the first rank to m, and exactly 1 school who gives the first rank to l.

The conditional probability is given by

(n− 1)(n− 2)(n− 3)× 1

n3 ×
(

1− 3

n

)n−4

.

As n approaches infinity, this expression converges to 1
e3 . Thus, for any sufficiently large n,

the conditional probability of Event 2 given Event 1 is at least, say, 1
2e3 .

Given Event 2, denote the schools that give the first ranks to h, m, and l by bh, bm, and

bl, respectively. Given Events 1 and 2, consider the conditional probability of the event (call

this event Event 3) that except h, m and l, there are exactly 1 student who gives the first

rank to bh, exactly 1 student who gives the first rank to bm, and exactly one student who

gives the first rank to bl. The conditional probability is given by

(n− 3)(n− 4)(n− 5)× 1

(n− 1)3 × (1− 3

(n− 1)
)n−6.

As n approaches infinity, this expression converges to 1
e3 , so for any sufficiently large n, the

conditional probability of Event 3 given Events 1 and 2 is at least, say, 1
2e3 .
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Given Event 3, denote the students who give the first rank to bh, bm, and bl by ih, im

and il, respectively. Given Events 1, 2, and 3, the conditional probability of the event (call

this event Event 4) that at least two out of ih, im, and il have higher rankings than all of

h, m, and l in school a’s preference relation is 1/5.41 (Note that Events 1, 2, and 3 do not

impose any restriction on the rankings of h, m, l, ih, im, and il in a’s preference relation.)

Given the above calculations, the joint probability of Events 1, 2, 3, and 4 is bounded from

below by zero (at least 1/140e7) for any sufficiently large n.

Given Event 1, school a is matched with two students out of h, m and l with conditional

probability 1 by the assumption that k = 1. In addition, given Events 1, 2, 3, and 4, the

following event occurs with conditional probability 1: a is matched with two students out

of h, m, and l while being contained in a cycle involving another agent than a, h, m, and

l. Since the above events are symmetric for h, m and l, this means that a is matched with

{m, l} with conditional probability 1/3. Therefore, a is matched with {m, l} at least with

unconditional probability 1/420e7.

Now additionally assume the event that a prefers h to m to l. (Given the above argument,

the joint probability of this event and Events 1-4 is bounded away from below by zero for

any sufficiently large n). Then consider the following disimprovement for a in m’s preference

relation: m declares all schools unacceptable. This change of m’s preference relation leads to

the situation where h and l are the only students who rank a as an acceptable school, which

in turn implies that after the disimprovement for a in m’s preference relation, a has to be

matched with {h, l} with probability 1. Since a is matched with {m, l} with a probability

bounded from below by zero before the disimprovement, the disimprovement for a makes

a strictly better off with a probability that is bounded from below by zero. Moreover, the

improvement for a in the preferences of m (from the disimproved preferences, where m finds

a unacceptable, to the improved preferences, where m prefers a most) have properties (1)

and (2) in Definition 6 of respecting improvements for desirable students: That is, m is more

preferred to l by a, while l is matched under the preference profile after the disimprovement.

This completes the proof.

A.1.8 Proof of Proposition 6

Proof. The student-optimal stable mechanism. Let ϕS be the student-optimal stable

mechanism and suppose that (1) for any s such that s �c s1 for every s1 ∈ ϕSc (�C ,�′S),

�s is an improvement for school c over �′s and (2) for any s such that s1 %c s for some

41Note that the above event is equivalent to the event that the two highest-ranked students by a among
the six students h,m, l, ih, im, and il are from ih, im and il. The probability of the latter event is given by
3× 2× 4!/6! = 1/5.
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s1 ∈ ϕSc (�C ,�′S), c1 �s c2 if and only if c1 �′s c2 for any c1, c2 ∈ C ∪ {∅}. Assume to

the contrary that ϕSc (�C ,�′S) �c ϕSc (�) where �:= (�C ,�S). Without loss of generality,

consider the case where there exists exactly one student s and one school c̄ such that the

only difference between � and (�C ,�′S) is that the rankings of c and c̄ are exchanged for

student s. Formally, assume that c �s c̄, c̄ �′s c, c1 �s c2 if and only if c1 �′s c2 for any

c1, c2 ∈ C with {c1, c2} 6= {c, c̄}, and �−s=�′−s. We write (�′s,�−s) := (�C ,�′S). Note that

by assumption, s �c s1 for any s1 ∈ ϕSc (�C ,�′S). We consider the following cases.

(1) Consider the case in which ϕSs (�) 6= c. Note that ϕS(�) is stable at (�′s,�−s) since

otherwise a blocking pair of ϕS(�) at (�′s,�−s) is also a blocking pair of ϕS(�) at �, a

contradiction. Then, since ϕS is a student-optimal (school-pessimal) stable mechanism,

ϕSc (�) %c ϕ
S
c (�′s,�−s), a contradiction.

(2) Consider the case in which ϕSs (�) = c and ϕSs (�′s,�−s) 6= c̄. By definition of the

student-proposing deferred acceptance algorithm and the assumption on �s, if ϕSs (�′s
,�−s) �′s c̄, then ϕS(�) = ϕS(�′s,�−s) must hold, a contradiction to the assump-

tion that ϕSc (�′s,�−s) �c ϕSc (�). Thus, c̄ %′s ϕ
S
s (�′s,�−s). Combining this with

the assumption that ϕSs (�′s,�−s) 6= c̄, we obtain c̄ �′s ϕSs (�′s,�−s). On the other

hand, by the assumption that s �c s1 for any s1 ∈ ϕSc (�C ,�′S), it must be the case

that ϕSs (�′s,�−s) 6= c. Combining this with c̄ �′s ϕSs (�′s,�−s) and the assumption

on �s, we obtain c �s ϕSs (�′s,�−s). Thus, since ϕS(�′s,�−s) is stable at (�′s,�−s),
|ϕSc (�′s,�−s)| = qc and for any s̄ ∈ ϕSc (�′s,�−s), it must be the case that s̄ �c s, a

contradiction to the assumption that s �c s1 for any s1 ∈ ϕSc (�C ,�′S). Therefore, this

case cannot occur.

(3) Consider the case in which ϕSs (�) = c and ϕSs (�′s,�−s) = c̄. The following two Claims

jointly imply that ϕSc (�) %c ϕ
S
c (�′s,�−s), a contradiction. Let �′c be a preference

relation of school c such that ∅ �′c s, and s1 �′c s2 if and only if s1 �c s2 for any

s1, s2 ∈ S \ ({s} ∪ {∅}).

Claim 4. ϕSc (�′c,�−c) = ϕSc (�′s,�−s).

Proof. Write �s: c1, ..., ck, c, c̄, ... and �′s: c1, ..., ck, c̄, c, .... Under both (�′s,�−s) and

(�′c,�−c), the student-proposing deferred acceptance algorithm proceeds in exactly

the same way until the step where s is rejected by ck. Under (�′s,�−s), s is accepted

by c̄ at the next step by the assumption that ϕSs (�′s,�−s) = c̄. Under (�′c,�−c), s
is rejected by c at the next step and then apply for c̄ since ∅ �c s and �s: ..., c, c̄, ....
By definition of the algorithm and the fact that s is accepted by c̄ under (�′s,�−s),
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s is accepted by c̄. By an order irrelevance property by McVitie and Wilson (1970),

ϕSc (�′c,�−c) = ϕSc (�′s,�−s).

Claim 5. ϕSc (�) %c ϕ
S
c (�′c,�−c).

Proof. ϕS(�) is no longer stable at (�′c,�−c) since ϕSs (�) = c by the assumption but

s is unacceptable for c. Now, create a new matching by letting s be unmatched and

keeping every other student matched to the same school as in ϕS(�). Denote the

resulting matching by µ1.

Next, consider blocking pairs of µ1 at (�′c,�−c) under the following restriction: If

|ϕSc (�)| = qc, then for blocking pairs involving c, we regard (s̄, c) as a blocking pair

only if s̄ �c ŝ for some ŝ ∈ ϕSc (�). Then the only student possibly involved in such a

blocking pair is s(= ϕSc (�)). Choose the school (call it c1) which is the most preferred

school for s among those possibly involved in blocking pairs with s, and satisfy the

blocking pair (s, c1). If there is no such blocking pair, stop the procedure. Denote the

resulting matching by µ2.

If |µ1
c1| < qc1 or c1 = c, then stop the procedure. Otherwise, repeat the same step as

above. Continue this procedure until it terminates and denote the resulting matching

by µ∞. (Note that this procedure terminates in a finite number of steps since at every

step, some school becomes strictly better off while there are only finitely many schools.)

If |ϕSc (�)| < qc, then let µ̄ := µ∞. If |ϕSc (�)| = qc, then obtain µ̄ by the following

“vacancy chain dynamics” (Blum, Roth, and Rothblum, 1997) beginning with school

c: In that algorithm, we will let c block the matching µ∞ if possible. (Here we allow

the potential blocking partner s̄ to be such that ŝ �c s̄ for any ŝ ∈ ϕSc (�) as long

as |µ∞c | < qc or s̄ �c ŝ for some ŝ ∈ µ∞c ). If c cannot block µ∞, then terminate

the procedure and let µ̄ = µ∞. If there is a blocking pair, consider the most preferred

blocking pair for c and satisfy it. If this results in taking a student from another school,

then satisfy the most preferred blocking pair for that school, if any, to obtain a new

matching. We continue the same procedure until there remains no blocking pair. This

procedure terminates in a finite number of steps because at every step, some student

becomes strictly better off while there are only finitely many students. Denote the

resulting matching by µ̄.

Note that whether |ϕSc (�)| < qc or |ϕSc (�)| = qc, µ̄ is stable at (�′c,�−c) by the

following reason: When |ϕSc (�)| < qc, at every step in the first procedure (to obtain

µ∞), the only student possibly contained in a blocking pair is the one who is rejected
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by a school at the previous step.42 Since such a student cannot form any blocking pair

once µ∞ is obtained, µ̄ := µ∞ is stable at (�′c,�−c). When |ϕSc (�)| = qc, by a reason

similar to the preceding one, when µ∞ is obtained, i.e., at the first step of the second

procedure (to obtain µ̄), the only school possibly contained in a blocking pair is c. Also,

at every following step in the second procedure, the only school possibly contained in a

blocking pair is the one which lost a student at the previous step. Since such a school

cannot form any blocking pair once µ̄ is obtained, it is stable at (�′c,�−c).

Finally, to complete the proof, we consider the following cases.

(a) Consider the case in which ck = c for some k ≥ 1 in the first procedure.

Claim 6. µ̄ = µ∞.

Proof. When |ϕSc (�)| < qc, µ̄ := µ∞ by definition of the procedure. When |ϕSc (�
)| = qc, it is the case that µ∞c = ϕSc (�)∪{sk}\{s} and sk �c ŝ for some ŝ ∈ ϕSc (�).

Note that at the first step of the second procedure, c can form a blocking pair

only with a student s̄ such that ŝ �c s̄ for any ŝ ∈ ϕSc (�). Thus, the second

procedure stops without making any change to µ∞ and we obtain µ̄ = µ∞.

As this Claim and its proof demonstrate, the whole procedure stops immediately

after (sk, ck) is satisfied and thus µ̄c = µ∞c = ϕSc (�) ∪ {sk} \ {s}.

i. Consider the case in which µ̄c = ϕSc (�′c,�−c). Recall Claim 4 that ϕS(�′c
,�−c) = ϕS(�′s,�−s). By the assumption that s �c s1 for any s1 ∈ ϕSc (�′s
,�−s) = ϕS(�′c,�−c), we obtain s �c sk. Thus, by responsiveness of �c,
ϕSc (�) �c µ̄c = ϕS(�′c,�−c) = ϕS(�′s,�−s), a contradiction.

ii. Consider the case in which µ̄c 6= ϕSc (�′c,�−c). Since ϕS is the student-optimal

(school-pessimal) stable mechanism and Claim 2, µ̄c �c ϕSc (�′c,�−c) = ϕSc (�′s
,�−s). Note that s 6= sk since ∅ �′c s. If s �c sk, then ϕSc (�) �c ϕSc (�
) ∪ {sk} \ {s} = µ̄c �c ϕSc (�′s,�−s), a contradiction. Given this, suppose

that sk �c s. Then sk 6∈ ϕSc (�′s,�−s) by the assumption that s �c s1 for any

s1 ∈ ϕSc (�′s,�−s). Let us write

ϕSc (�′s,�−s) = (ϕSc (�′s,�−s) ∩ µ̄c) ∪ (ϕSc (�′s,�−s) \ S1)

where S1 := ϕSc (�′s,�−s)∩µ̄c. Let S2 := ϕSc (�′s,�−s)\S1. By the assumption

that s �c s1 for any s1 ∈ ϕSc (�′s,�−s), S1 ⊂ µ̄c \ {sk} = ϕSc (�) \ {s}. We use

the following lemma.

42Note that since |ϕSc (�)| < qc, we can ignore the restriction on blocking pairs formed by c.
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Lemma 2. (Roth and Sotomayor (1989)) Let µ and µ′ be stable matchings

and consider an arbitrary school c. If µc �c µ′c, then s �c s′ for any s ∈ µc
and s′ ∈ µ′c \ µc.

By this Lemma, for any s̄ ∈ S2 and any ŝ ∈ ϕSc (�) \ {s}, it is the case that

ŝ �c s̄. Also, |ϕSc (�)| = |ϕSc (�) \ {s} ∪ {sk}| = |µ̄c| = |ϕSc (�′c,�−c)| =

|ϕSc (�′s,�−s)| where the third equality is a consequence of the rural hospitals

theorem and stability of µ̄ and ϕS(�′c,�−c) at (�′c,�−c). Finally, s �c s̄ for

every s̄ ∈ ϕSc (�′s,�−s) by assumption. Therefore, by responsiveness of �c,
we obtain ϕSc (�) �c ϕSc (�′s,�−s), contradiction.

(b) Consider the case in which ck 6= c for any k ≥ 1 in the first procedure.

i. Consider the case in which |ϕSc (�)| < qc. Then, µ̄ := µ∞ by definition of

the procedure and it is stable at (�′c,�−c). By the assumption that ck 6= c

for any k ≥ 1 in the first procedure, µ̄c = ϕSc (�) \ {s}. Thus, ϕSc (�) �c µ̄c
since s �c ∅. Also, µ̄c %c ϕ

S
c (�′c,�−c) since µ̄c %′c ϕ

S
c (�′c,�−c) (by school-

pessimality of ϕS), s 6∈ µ̄c (by µ̄c = ϕSc (�)\{s}), and s 6∈ ϕSc (�′c,�−c) (by the

assumption that ϕSs (�′c,�−c) = c̄). In addition, ϕSc (�′c,�−c) = ϕSc (�′s,�−s)
by Claim 2. Combining these, ϕSc (�) �c ϕSc (�′s,�−s), a contradiction.

ii. Consider the case in which |ϕSc (�)| = qc. By the assumption that ck 6= c for

any k ≥ 1 in the first procedure, µ∞c = ϕSc (�) \ {s}. Let s̃1 be the student,

if any, who blocks µ∞ with c at the first step of the second procedure and

µ̃1 be the resulting matching after satisfying (s̃1, c). It is easy to see that

µ̃1
c = ϕSc (�)∪{s̃1}\{s}. Note that by the restriction on blocking pair formed

by c in the first procedure, ŝ �c s̃1 for any ŝ ∈ ϕSc (�). Thus, we obtain

ϕSc (�) �c µ̃1
c . In addition, it is easy to see that µ̃1

c %c µ̄c. Combining these,

ϕSc (�) �c µ̄c. Also, µ̄c %c ϕ
S
c (�′c,�−c) since µ̄c %′c ϕ

S
c (�′c,�−c) (by school-

pessimality of ϕS), s 6∈ µ̄c (by µ̃1
c = ϕSc (�) ∪ {s̃1} \ {s} and ∅ �′c s), and

s 6∈ ϕSc (�′c,�−c) (by the assumption that ϕSs (�′c,�−c) = c̄). In addition,

ϕSc (�′c,�−c) = ϕSc (�′s,�−s) by Claim 2 Combining these, ϕSc (�) �c ϕSc (�′s
,�−s), a contradiction.

The school-optimal stable mechanism. Let ϕC be the school-optimal stable mechanism

and suppose that (1) for any s such that s �c s1 for any s1 ∈ ϕCc (�C ,�′S), �s is an

improvement for school c over �′s and (2) for any s such that s1 %c s for some s1 ∈ ϕCc (�C
,�′S), c1 �s c2 if and only if c1 �′s c2 for any c1, c2 ∈ C ∪ {∅}. Assume to the contrary
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that ϕCc (�C ,�′S) �c ϕCc (�) where �:= (�C ,�S). Without loss of generality, consider the

case where there exists exactly one student s and one school c̄ such that the only difference

between� and (�C ,�′S) is that the rankings of c and c̄ are exchanged for student s. Formally,

assume that c �s c̄, c̄ �′s c, c1 �s c2 if and only if c1 �′s c2 for any c1, c2 ∈ C with

{c1, c2} 6= {c, c̄}, and �−s=�′−s. We write (�′s,�−s) := (�C ,�′S). Note that by assumption,

s �c s1 for any s1 ∈ ϕCc (�C ,�′S).

If ϕC(�C ,�′S) is stable under (�C ,�S), then ϕCc (�C ,�S) %c ϕ
C
c (�C ,�′S) since ϕC(�C

,�S) is the school-optimal stable matching under (�C ,�S). This contradicts the assumption,

so suppose that ϕC(�C ,�′S) is no longer stable under (�C ,�S). Thus there is a blocking pair

of ϕC(�C ,�′S) under (�C ,�S). Particularly, since (i) the only agent whose preferences are

different between (�C ,�′S) and (�C ,�S) is s, and (ii) only c and c̄’s rankings are exchanged

in s’s preferences between (�C ,�′S) and (�C ,�S) while relative rankings of all the other

schools are unchanged, it follows that (s, c) is the only possible blocking pair of ϕC(�C ,�′S)

at (�C ,�S) and that ϕCs (�C ,�′S) = c̄.

Now, create a new matching by satisfying the blocking pair (s, c). That is, modify

ϕC(�C ,�′S) by matching s to c, letting c reject its least preferred student s′ ∈ ϕCc (�C ,�′S)

if |ϕCc (�C ,�′S)| = qc and no student if |ϕCc (�C ,�′S)| < qc, and keeping every other student

matched to the same school (or the outside option) as in ϕC(�C ,�′S). Denote the resulting

matching by µ1.

Next, consider blocking pairs of µ1 under the restriction that for blocking pairs involving

student s′, we regard (s′, ĉ) as a blocking pair only if ĉ �s′ c. The only school possibly

involved in such a blocking pair is c̄ by the following reason: First, all students except s′

are better off in µ1 than in ϕC(�C ,�′S) and hence are less willing to form a blocking pair.

Second, no school except for c could be part of a blocking pair of ϕC(�C ,�′S) at (�C ,�S),

no school except for c1 and c has changed its set of matched students between ϕC(�C ,�′S)

and µ1, and c can no longer form a blocking pair. Choose the student (call her s1) who is

the most preferred student for c̄ among those possibly involved in blocking pairs with c̄, and

satisfy the blocking pair (s1, c̄). If there is no such blocking pair (s1, c̄), stop the procedure.

Denote the resulting matching by µ2.

If s1 is a student who is unmatched at µ1 or µ1
s1 = c, then stop the procedure. Otherwise,

repeat the same step as above. Continue this procedure until it terminates and denote the

resulting matching by µ∞. (Note that this procedure terminates in a finite number of steps

since at every step, some student becomes strictly better off while there are only finitely

many students. )

If |ϕCc (�C ,�′S)| < qc, then let µ̄ := µ∞. If |ϕCc (�C ,�′S)| = qc, then obtain µ̄ by the

following “vacancy chain dynamics” beginning with student s′: In that algorithm, we will
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let s′ block the matching µ∞ if possible. (Here we allow the potential blocking partner ĉ

to be such that c �s′ ĉ as long as ĉ �s′ µ∞s′ ). If s′ cannot block µ∞, then terminate the

procedure and let µ̄ = µ∞. If there is a blocking pair, consider the most preferred blocking

pair for s′ and satisfy it. If this results in a rejection of a student, then satisfy the most

preferred blocking pair for that student, if any, to obtain a new matching. We continue the

same procedure until there remains no blocking pair. This procedure terminates in a finite

number of steps because at every step, some school becomes strictly better off and there are

only a finitely many schools. Denote the resulting matching by µ̄.

Note that whether |ϕCc (�C ,�′S)| < qc or |ϕCc (�C ,�′S)| = qc, µ̄ is stable at (�C ,�S)

by the following reason: When |ϕCc (�C ,�′S)| < qc, at every step in the first procedure (to

obtain µ∞), the only school possibly contained in a blocking pair is the one which lost a

student at the previous step.43 Since such a school cannot form any blocking pair once µ∞ is

obtained, µ̄ := µ∞ is stable. When |ϕCc (�C ,�′S)| = qc, by a reason similar to the preceding

one, when µ∞ is obtained, i.e., at the first step of the second procedure (to obtain µ̄), the

only student possibly contained in a blocking pair is s′. Also, at every following step in the

second procedure, the only student possibly contained in a blocking pair is the one who was

rejected at the previous step. Since such a student cannot form any blocking pair once µ̄ is

obtained, it is stable at (�C ,�S).

Finally, to complete the proof, consider the following cases.

(1) Consider the case in which |ϕCc (�C ,�′S)| < qc. In this case, µ̄ = µ∞.

(a) Consider the case in which there is no step in the first procedure (to obtain µ∞)

at which a student in µ1
c is in a blocking pair that is satisfied. Then µ̄c = µ∞c =

ϕCc (�C ,�′S) ∪ {s} �c ϕCc (�C ,�′S). Since µ̄ is stable at (�C ,�S) and ϕC is the

school-optimal stable mechanism, ϕCc (�C ,�S) �c µ̄c. Combining these, we obtain

ϕCc (�C ,�S) �c ϕCc (�C ,�′S), a contradiction.

(b) Consider the case in which there is a step in the first procedure at which a student

in µ1
c is in a blocking pair that is satisfied. Then, any such student (call her s̄) is

such that s %c s1 by the assumption that s �c s̄ for any s1 ∈ ϕCc (�C ,�′S). Also

note that by definition the procedure terminates immediately at the step at which

s̄ forms a blocking pair that is satisfied. Therefore µ̄c = ϕCc (�C ,�′S)∪{s}\{s̄} %c

ϕCc (�C ,�′S). Since µ̄ is stable at (�C ,�S) and ϕC is the school-optimal stable

mechanism, ϕCc (�C ,�S) �c µ̄c. Combining these, we obtain ϕCc (�C ,�S) %c

ϕCc (�C ,�′S), a contradiction.

43Note that at the first step, c does not reject any student since |ϕCc (�C ,�′S)| < qc, which implies that s′

is not rejected by c. Thus, in this case, we can ignore the restriction on blocking pairs formed by s′
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(2) Consider the case in which |ϕCc (�C ,�′S)| = qc. Note that by definition of the second

procedure (to obtain µ̄), we have µ̄c �c µ∞c for any c.

(a) Consider the case in which there is no step in the first procedure at which a student

in µ1
c is in a blocking pair that is satisfied. Then, µ∞c = ϕCc (�C ,�′S)∪{s}\{s′} �c

ϕCc (�C ,�′S) by the assumption that s �c s1 for any s1 ∈ ϕCc (�C ,�′S). Also recall

that µ̄c �c µ∞c . Combining these, we obtain µ̄c �c ϕCc (�C ,�′S). Since µ̄ is stable

at (�C ,�S) and ϕC is the school-optimal stable mechanism, ϕCc (�C ,�S) �c µ̄c.
Combining these, we obtain ϕCc (�C ,�S) �c ϕCc (�C ,�′S), a contradiction.

(b) Consider the case in which there is a step in the first procedure at which a student

in µ1
c is in a blocking pair that is satisfied. Then, any such student (call her s̄) is

such that s %c s̄ by the assumption that s �c s1 for any s1 ∈ ϕCc (�C ,�′S). Also

note that by definition the procedure terminates immediately at the step at which

s̄ forms a blocking pair that is satisfied. Therefore µ∞c = ϕCc (�C ,�′S)∪{s}\{s′, s̄}.
Moreover, in such a case, in the first step of the second procedure (to obtain µ̄),

the most preferred blocking partner for s′ is c, because µ∞ has the property that

there is no blocking pair (s′, ĉ) such that ĉ �s′ c. Thus the second procedure

terminates once blocking pair (s′, c) is satisfied and thus µ̄c = µ∞c ∪{s′} = ϕCc (�C
,�′S) ∪ {s} \ {s̄} (Note that |µ∞c | = |ϕCc (�C ,�′S) ∪ {s} \ {s′, s̄}| = |ϕCc (�C ,�′S
)| − 1 = qc − 1, so no further rejection occurs after (s′, c) is satisfied). Recalling

that s %c s̄, we obtain µ̄c %c ϕ
C
c (�C ,�′S). Since µ̄ is stable at (�C ,�S) and ϕC

is the school-optimal stable mechanism, ϕCc (�C ,�S) �c µ̄c. Combining these, we

obtain ϕCc (�C ,�S) %c ϕ
C
c (�C ,�′S), a contradiction.

A.1.9 Proof of Proposition 9

It is useful to start with the following result, presenting an equivalent representation of

virtual homogeneity. Let ρc(s) be the ranking of student s in �c. That is, ρc(s) = t if and

only if rt(c) = s.

Lemma 3. A school preference profile �C is virtually homogeneous if and only if there exist

no a, b ∈ C and i, j ∈ S such that

• i �a j and j �b i, and

• There exists a set of students Sb ⊂ S \ {i, j} such that |Sb| = qb − 1 and s �b i for

every s ∈ Sb.
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Proof. The “Only If” direction. Suppose that �C is virtually homogeneous and a, b ∈ C
and i, j ∈ S satisfy

i �a j, j �b i. (4)

Consider a student s∗ ∈ {i, j} whose worst ranking by a or b is the worst among i and j’s rank-

ings by a or b. That is, s∗ is a student who satisfies max{ρa(s∗), ρb(s∗)} = max{ρa(i), ρb(i), ρa(j), ρb(j)}
(if both i and j satisfy this condition, let s∗ be one of them arbitrarily). Consider the fol-

lowing cases.

(1) Suppose s∗ = i. Then, since ρa(i) < ρa(j) ≤ ρb(i) by assumption (4), virtual homo-

geneity implies that ρb(i) ≤ q̄. Therefore there does not exist Sb ⊂ S \ {i, j} such that

|Sb| = qb − 1 and s �b i for all s ∈ Sb.

(2) Suppose s∗ = j. Then, since ρb(j) < ρb(i) ≤ ρa(j) by assumption (4), virtual homo-

geneity implies that ρa(j) ≤ q̄. Thus we obtain ρb(i) ≤ ρa(j) ≤ q̄. Therefore there

does not exist Sb ⊂ S \ {i, j} such that |Sb| = qb − 1 and s �b i for all s ∈ Sb.

The “If” direction. We shall prove the contraposition. Thus assume that �C is not

virtually homogeneous. Let

λ = max{` ∈ N| there exist two schools c, c̄ ∈ C such that r`(c) 6= r`(c̄)}.

Then the assumption that �C is not virtually homogeneous implies λ > q̄ ≡ min{qĉ|ĉ ∈ C}.
Let schools a, b ∈ C satisfy rλ(a) 6= rλ(b) and, without loss of generality, qb = q̄.44 Denote

i = rλ(b) and j = rλ(a). By maximality of λ, it follows that i �a j and j �b i. Moreover,

since λ > q̄ = qb, there exists Sb ⊂ S \ {i, j} such that |Sb| = qb − 1 and s �b i for every

s ∈ Sb, finishing the proof.

We will show the following lemma.

Lemma 4. The condition that either

(1) The school preference profile �C is virtually homogeneous, or

(2) For every school c ∈ C, the capacity associated with �c is one,

44The reason that it is without loss of generality to assume qb = q̄ is as follows. Define b to be a school
with qb = q̄. By assumption there exist two schools a′ and a′′ such that rλ(a′) 6= rλ(a′′). Then it is clear
that at least one of the relations rλ(a′) 6= rλ(b) and rλ(a′′) 6= rλ(b) should hold. Let a ∈ {a′, a′′} be a school
such that the relation holds, which shows the claim.
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is satisfied if and only if the following condition is satisfied: There exist no a, b ∈ C and

i, j ∈ S such that

• qa ≥ 2,

• i �a j and j �b i, and

• There exists a set of students Sb ⊂ S \ {i, j} such that |Sb| = qb − 1 and s �b i for

every s ∈ Sb.

Proof. The “only if” direction follows immediately by inspection of the conditions and

Lemma 3. To show the “if” direction, assume that �C is not virtually homogeneous and

there is at least one school c ∈ C with qc ≥ 2, and we shall show that there exist a, b, i, and

j that satisfy the three conditions in the statement of this claim. By Lemma 3, there exist

a, b ∈ C and i, j ∈ S such that

• i �a j and j �b i, and

• There exists a set of students Sb ⊂ S \ {i, j} such that |Sb| = qb − 1 and s �b i for

every s ∈ Sb.

Consider the following cases.

(1) Assume qa ≥ 2. Then the three conditions in the statement of this claim immediately

follow.

(2) Assume qa = 1 and qb ≥ 2. Then the desired conclusion holds by relabeling (a, b, i, j)

to (b, a, j, i).

(3) Assume qa = qb = 1. Then, by assumption there exists c 6= a, b such that qc ≥ 2.

If i �c j, then the desired conclusion holds by relabeling c to a. If j �c i, then the

desired conclusion holds by relabeling (c, a, j, i) to (a, b, i, j).

We shall show the contraposition. Assume that the condition in Proposition 9 is not

satisfied. By Lemma 4, there exist a, b ∈ C and i, j ∈ S such that

• qa ≥ 2,

• i �a j and j �b i, and

• There exists a set of students Sb ⊂ S \ {i, j} such that |Sb| = qb − 1 and s �b i for

every s ∈ Sb.
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Consider a preference profile �S such that

�i:b, a, ∅,

�j:b, a, ∅,

�k:b, ∅,∀k ∈ Sb,

�l:∅,∀l ∈ S \ ({i, j} ∪ Sb).

Then the unique stable matching at this preference profile matches i to a and Sb ∪ {j} to b

while leaving every other student unmatched. Now consider an alternative preference profile

�′= (�′j,�−j) where �′j: a, b, ∅. Note that �′ is an improvement for a over �. The unique

stable matching at preference profile �′ matches j to a and Sb ∪ {i} to b. Thus a is made

worse off at �′ than at � although �′ is an improvement for a over �, showing the claim.

The “if” direction. First consider the case (2) of the conditions in the statement of the

proposition in which qc = 1 for all c ∈ C. In this case, Balinski and Sönmez (1999) show

that the student-optimal stable mechanism respects improvements.

Second, consider the case (1) of the conditions in the statement of the proposition in which

�C is virtually homogeneous. We will show the claim by presenting a specific mechanism

that is stable and respects improvements. Fix a school c ∈ C arbitrarily and consider the

following serial dictatorship with respect to �c:

• Step t : Choose student rt(c). Let her be matched with a school (or the outside

option) that she prefers most among all the schools whose entire capacity has not been

exhausted by the end of Step (t-1).

If �C is virtually homogeneous, then clearly the serial dictatorship with respect to �c is

identical to the serial dictatorship with respect to �c̄ for any c, c̄ ∈ C because the top q̄

students in every school’s preferences are always matched with their most preferred schools

regardless of which school’s preferences are used. Thus, when convenient, we refer to the

mechanism simply as the serial dictatorship.

Claim 7. If �C is virtually homogeneous, then the serial dictatorship with respect to �c is

stable for any c ∈ C.

Proof. Let µ be the matching resulting from the serial dictatorship. It is obvious that µ is

individually rational. To show that there is no blocking pair of µ, assume that c̄ �s µs for

a student s ∈ S. Then, by the definition of the serial dictatorship with respect to �c, it
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follows that

|µc̄| = qc̄, (5)

s̄ �c s for every s̄ ∈ µc̄. (6)

Also note that ρc(s) > q̄ because otherwise s should receive her most preferred school in the

serial dictatorship with respect to �c. Property (6) and the assumption that �C is virtually

homogeneous imply

s̄ �c̄ s for every s̄ ∈ µc̄. (7)

Properties (5) and (7) show that (s, c̄) does not block µ, showing that the serial dictatorship

is a stable mechanism.

Claim 8. If �C is virtually homogeneous, then the serial dictatorship respects improvement

of school quality for any c ∈ C.

Proof. Let ϕ be the serial dictatorship. Consider two preference profiles� and�′= (�′s,�−s)
such that �′ is an improvement for c over �, where s ∈ S and c ∈ C.

(1) Suppose that ϕs(�) = c. Then, ϕ(�′) = ϕ(�) by inspection of the steps of the serial

dictatorship.45

(2) Suppose that ϕs(�) 6= c and ϕs(�′) 6= c. Then, again ϕ(�) = ϕ(�′) by inspection of

the steps of the serial dictatorship.

(3) Suppose that ϕs(�) 6= c while ϕs(�′) = c.

(a) Suppose ϕc(�) \ ϕc(�′) = ∅. Then ϕc(�′) %c ϕc(�) by responsiveness of school

preferences as well as the assumption that every student is acceptable to c under

�c.

(b) Suppose ϕc(�) \ ϕc(�′) 6= ∅. We show the following claim.

Claim 9. Suppose ϕc(�) \ ϕc(�′) 6= ∅. Then there exists s̄ ∈ S such that

ϕc(�′) = ϕc(�) ∪ {s} \ {s̄} and s �c s̄.

Proof. First note that ϕŝ(�) = ϕŝ(�′) for every student ŝ with ŝ �c s because

of the definition of the serial dictatorship. Thus every student in ϕc(�) \ ϕc(�′)
45Technically speaking, this is a consequence of Maskin monotonicity. Note that it is well-known than the

serial dictatorship satisfies Maskin monotonicity.
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is less preferred to s by c. Let s̄ be the most preferred student according to

�c in ϕc(�) \ ϕc(�′). Suppose that s̄ is the last student who receives c in the

serial dictatorship at preference profile �. Then, since no student receives c in

subsequent steps either at � or �′, clearly ϕc(�′) = ϕc(�) ∪ {s} \ {s̄}. Suppose

that s̄ is not the last student who receives c in the serial dictatorship at preference

profile �. This implies that a seat in c is still available to be received by s̄ at that

step in both preference profiles � and �′. Therefore, the school that student s̄

is assigned to at �′ is the unique school that has a vacant seat in that step at

�′ but not at �. This implies that at the end of that step, the numbers of seats

available in each school in the serial dictatorships are identical between � and �′.
Therefore, assignments for every student who is less preferred to s̄ are identical

between � and �′, implying that ϕc(�′) = ϕc(�) ∪ {s} \ {s̄}.

Since �c is responsive, Claim 9 implies that ϕc(�′) �c ϕc(�). This completes the

proof.

Claims 7 and 8 complete the proof.

A.1.10 Proof of Proposition 10

The “only if” direction. Assume for contradiction that �C is not virtually homogeneous,

but there exists a mechanism that is Pareto efficient for students and respects improvements

of school quality. By Lemma 3, there exist a, b ∈ C and i, j ∈ S such that

• i �a j and j �b i, and

• There exists a set of students Sb ⊂ S \ {i, j} such that |Sb| = qb − 1 and s �b i for

every s ∈ Sb.

First, consider the following preference profile �S of students:

�i:a, ∅,

�k:b, ∅,∀k ∈ Sb ∪ {j},

�l:∅,∀l ∈ S \ ({i, j} ∪ Sb)

Under �≡ (�S,�C), the unique Pareto efficient matching matches i to a, Sb ∪ {j} to b, and

leaves all other students unmatched.
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Next, consider students’ new preferences �′S≡ (�′i,�−i) where i’s preference is �′i: b, a, ∅.
Note that �′ is an improvement for school b over �. Since j �b i, s �b i for every s ∈ Sb,
and the mechanism is Pareto efficient for students and respects improvement, the outcome

of the mechanism under �′, b has to be matched with Sb ∪ {j}. This in turn means that a

must be matched with i under �′.
Finally, consider another preference profile �′′≡ (�′i,�′j,�−{i,j}) where �′j: a, b, ∅. Note

that �′′ is an improvement for school a over �′. Under �′′, the unique matching that

is Pareto efficient for students matches j to a and Sb ∪ {i} to b, which implies that a is

matched with j in the outcome of the mechanism. However, note that i �a j although �′′

is an improvement for school a over �′. This means that this mechanism does not respect

improvements of school quality, which is a contradiction.

The “if” direction. Fix c ∈ C arbitrarily and consider the serial dictatorship with respect

to �c. It is well-known that the serial dictatorship is Pareto efficient for students (see

Abdulkadiroğlu and Sönmez (1998)). This fact and Claim 8 complete the proof.

A.1.11 Proof of Proposition 11

Consider a student s, a student preference profile �S, and two school preference profiles

�C and �′C , where �′C is an improvement for student s over �C . Consider the first step t

at which the Boston algorithm using �C matches a student to a different school than the

Boston algorithm using �′C . (If no such step occurs, then s must get the same school under

both preference profiles, and we are done.) Since all other students besides s are ranked

the same relative to each other, this step must involve student s applying to some school

c. However, since student s is ranked (weakly) higher by all schools, this means that the

difference in the outcome of the algorithm at t using the two different inputs must be that

student s is assigned to the school c under preference profile �′C , but is not assigned to c

under preference profile �C . Therefore, student s is better off under �′C as she can only

recieve a worse outcome in the later steps of the Boston algorithm under preferences �C ,

and so we are done.

A.1.12 Proof of Proposition 12

Consider a student s, a student preference profile �S, and two school preference profiles

�C and �′C , where �′C is an improvement for student s over �C . Consider, without loss

of generality, the s-avoiding TTC algorithm, where in each step t, we remove one cycle

(s1, c1, s2, . . . , sK , cK); if there are multiple cycles, we clear a cycle that does not involve

student s. Since the order of cycle removal does not affect the outcome, this is equivalent to
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the original TTC mechanism.

At each step, then, of the s-avoiding TTC algorithm before s is removed under preferences

(�S,�′C), the same cycle is also removed (before s) under preferences �C , as a school at

each step under �′C is pointing at the same student as under �C or is pointing at s.

Now note that, when agent s is removed under (�′C ,�S), every school is directly or

indirectly pointing at agent s, and so agent s receives his favorite school from those remaining

at that step. Hence, as the set of schools left at the step where s is removed under preferences

�′C is a superset of the schools left at the step s is removed under preferences �C , s is weakly

better off.

A.2 The Boston Mechanism Does Not Respect Improvements Even

When a School Preference Profile is Virtually Homogeneous:

An Example

Let S = {s, s̄, ŝ} and C = {c, c̄}. Consider the following preferences:

�s:c, c̄, ∅,

�s̄:c, c̄, ∅,

�ŝ:c, c̄, ∅,

�c:s, s̄, ŝ, ∅,

�c̄:s, s̄, ŝ, ∅,

The capacities of the schools are given by qc = qc̄ = 1. Note that the two schools’ preferences

are exactly the same and thus this school preference profile is virtually homogeneous.

Under �≡ (�c,�c̄,�s,�s̄,�ŝ), the Boston mechanism ϕB produces the following match-

ing:

ϕB(�) =

(
c c̄ ∅
s s̄ ŝ

)
.

Now, consider student ŝ’s new preference relation �′ŝ: c̄, c, ∅. Note that �′ŝ is an improve-

ment for school c̄ over �ŝ. Under (�′ŝ,�−ŝ), the Boston mechanism produces the following

matching:

ϕB(�′ŝ,�−ŝ) =

(
c c̄ ∅
s ŝ s̄

)
.
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Hence,

ϕBc̄ (�) = s̄ �c̄ ŝ = ϕBc̄ (�′ŝ,�−ŝ),

even though �′ŝ is an improvement for c̄ over �ŝ. Therefore, the Boston mechanism does

not respect improvements of school quality at school preference profile (�c,�c̄) even though

(�c,�c̄) is virtually homogeneous.

A.3 The Relationship between Virtual Homogeneity and Acyclic-

ity (and Its Variants)

As referenced in the Remark at the end of Section 6.1, virtual homogeneity is stronger than

acyclicity by Ergin (2002) and all of its variants proposed in the literature: strong x-acyclicity

by Haeringer and Klijn (2009), a stronger notion of acyclicity by Kesten (2006), and essential

homogeneity by Kojima (2011). In this section, we prove this statement. We first introduce

the definitions of the above properties.

Definition 10. A school preference profile �C is Ergin acyclic if there exist no a, b ∈ C
and i, j, k ∈ S such that

• i �a j �a k �b i and

• there exist (possibly empty) disjoint sets of students Sa, Sb ⊂ S \ {i, j, k} such that

|Sa| = qa − 1, |Sb| = qb − 1, s �a j for every s ∈ Sa and s �b i for every s ∈ Sb.

Definition 11. A school preference profile �C is essentially homogeneous if there exist

no a, b ∈ C and i, j ∈ S such that

• i �a j and j �b i, and

• there exist (possibly empty) sets of students Sa, Sb ⊂ S \ {i, j} such that |Sa| =

qa − 1, |Sb| = qb − 1, s �a j for every s ∈ Sa and s �b i for every s ∈ Sb.

Definition 12. A school preference profile �C is strongly x -acyclic if there exist no

a, b ∈ C and i, j ∈ S such that

• i �a j and j �b i and

• there exist (possibly empty) disjoint sets of students Sa, Sb ⊂ S \ {i, j} such that

|Sa| = qa − 1, |Sb| = qb − 1, s �a j for every s ∈ Sa and s �b i for every s ∈ Sb.

Definition 13. A school preference profile �C is Kesten acyclic if there exist no a, b ∈ C
and i, j, k ∈ S such that
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• i �a j �a k, k �b i, and k �b j

• there exists a (possibly empty) set of students Sa ⊂ S \ {i, j, k} such that |Sa| = qa− 1

and for every s ∈ Sa, either (1) s �a i or (2) both s �a j and k %b s.

It is easy to see that if a school preference profile is virtually homogeneous, then it is

both Ergin acyclic and essentially homogeneous. Also, given that essential homogeneity

implies strong x-acyclicity by definition, any virtually homogeneous preference profile is also

strongly x-acyclic. Thus, the only thing we have to show is that virtual homogeneity implies

Kesten acyclicity.

Result. If a school preference profile is virtually homogeneous, then it is Kesten acyclic.

Proof. Suppose that a school preference profile is virtually homogeneous and is not Kesten

acyclic, i.e., there exist a, b ∈ C and i, j, k ∈ S such that

• i �a j �a k, k �b i, and k �b j

• there exists a (possibly empty) set of students Sa ⊂ S \ {i, j, k} such that |Sa| = qa− 1

and for every s ∈ Sa, either (1) s �a i or (2) both s �a j and k %b s.

This implies that there exist a, b ∈ C and i, j, k ∈ S such that

• i �a k and k �b i

• there exists a (possibly empty) set of students Sa ⊂ S \ {i, k} such that |Sa| = qa − 1

and s �a k for every s ∈ Sa.

However, such a, b, i, j, and k cannot exist by the assumption that the school preference

profile is virtually homogeneous. To see this point, observe that if such a, b, i, j, and k

exist, then b, a, k, and i satisfy the condition in Lemma 3. (It can be verified by simply

substituting (b, a, k, i) into (a, b, i, j) into Lemma 3.) However, according to the lemma, such

schools and students cannot exist when a school preference profile is virtually homogeneous,

a contradiction.

In summary, the above discussions show that virtual homogeneity is stronger than acyclic-

ity and its variants in the literature. A more detailed description of the relationships among

these properties is provided in the following Venn diagram in Figure 1, which combines the

results of this section with the Venn diagram on p. 1934 in Haeringer and Klijn (2009).
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Virtual Homogeneity

Acyclicity 
(Ergin)

Acyclicity (Kesten)

Essential Homogeneity 
(Kojima)

Strong x-acyclicity (Haeringer and Klijn)

x-acyclicity (Haeringer and Klijn)

Figure 1: Relationship Between Virtual Homogeneity and Other Properties.

A.4 An Exhaustive List of the Results

The following table provides an exhaustive list of the results in this paper. In this table, “RI”

is an abbreviation of respecting improvements. “X” in a cell means that the corresponding

mechanism satisfies the corresponding property (under the assumption that students truth-

fully report their preferences) while “×” means that it is not the case. In addition, for the

Boston mechanism, which is not strategy-proof, marks in parentheses indicate results under

the assumption that students play a Nash equilibrium. Specifically, “(X)” (“X” in paren-

theses) means that for any selection of a Nash equilibrium at each preference profile, the

corresponding mechanism satisfies the corresponding property. On the other hand, “(×)”

means that there exists a selection of a Nash equilibrium at each preference profile such that

the corresponding mechanism does not satisfy the corresponding property.
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SOSM Boston TTC
RI in General Markets × × ×

RI for Desirable Students in General Markets × × ×
RI in Large Markets X ×(X) ×

RI for Desirable Students in Large Markets X ×(X) ×
RI in Terms of Enrollment X X ×

RI for Very Desirable Students X X(×) ×
RI of Student Quality X X(×) X

Table 2: An Exhaustive List of the Results.
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