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target minorities. We develop a theoretical model of traffic enforcement and

demonstrate that the VOD test for racial profiling cannot distinguish between

discrimination and reverse discrimination. In our model, this problem arises

because motorists rationally alter their driving behavior when faced with dis-

criminatory policing. For groups that face discrimination, our model implies

that motorists who previously did not speed choose to speed in darkness, when

demography cannot be observed, thus creating the possibility that the share of

stopped minority motorists increases in darkness. We develop a follow-up test

for identifying the direction of differential treatment by examining the speed

distribution of motorists across daylight and darkness. Using data on traffic

stops in Massachusetts made by State and Local Police, we reject the VOD test

for equal treatment and demonstrate that driving speeds of stopped African-

Americans are higher in darkness consistent with discrimination.
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1 Introduction

In the United States, the possibility that police officers and departments treat

minorities differently than whites has been the source of both political protest

and social unrest, especially with the recent rise of the “Black Lives Matter”

movement. To many advocates, the high share of minorities involved in both

traffic stops and vehicle searches is a clear indication of continued discrimi-

nation on the part of law enforcement. However, the empirical evidence of

discrimination in traffic stops and searches has been mixed. Although the share

of minorities involved in traffic stops or searches often far exceeds the share

of the local population, analysts almost never have information on the actual

racial composition of motorists on the road, the behavior of those motorists, or

other visible indicators of guilt (Kowalski and Lundman 2007; p. 168; Fridell

et al. 2001, p. 22).1 Some researchers address this concern by focusing on

searches conditional on being stopped where the fraction of minorities among

stopped motorists is observed (Knowles, Persico, and Todd 2001; Anwar and

Fang 2006).2 However, such approaches cannot address the central question of

whether racial discrimination exists in police decisions to stop motorists.

Several recent papers (Grogger and Ridgeway 2006; Ridgeway 2009;

Horace and Rohlin 2016) pursue an alternative approach to identifying the ap-

propriate counterfactual or comparison basis for evaluating racial differences in

police stops. These papers postulate that race is less easily observable during

darkness and propose examining differences in the racial composition of traffic

stops in daylight relative to darkness. This strategy, coined the “Veil of Dark-

ness” by Grogger and Ridgeway (2006), is rapidly becoming a key tool that

policymakers use to examine police departments for evidence of discrimination.

1See recent evidence in Rhode Island by McDevitt et al. (2014) or North Carolina by
Baumgartner and Epp (2012).

2One can either examine the likelihood of stop or the success rate of searches. Performance
based strategies using success rates arise from Becker’s (1957) classic model of taste based
discrimination. Such performance approaches have also been pursued in the study of mortgage
lending discrimination. See Ross and Yinger (1999, 2002, chap. 8) for a review of that
literature. These performance-based studies have been criticized as being biased away from
finding discrimination (Ayres 2002).

2



In recent years, researchers have applied the VOD test in cities such as Cincin-

nati, OH; Oakland, CA; Minneapolis, MI; New Orleans, LA; San Diego, CA;

Syracuse, NY; Portland, OR; and several in North Carolina.3 The first statewide

application by Ross et al. (2015, 2016) took place in Connecticut and has served

as a model for proposed legislation and evaluations in California, Oregon, and

Rhode Island. The advantage of the VOD framework is that the distribution of

stopped motorists in darkness, when race is unobserved, may provide a better

indication of the distribution of motorists and motorist behavior than alterna-

tive counterfactuals like the racial composition of community residents. If racial

differences are larger during the daylight, then this difference-in-differences test

is inferred to imply evidence of discrimination against minority motorists. This

strategy is similar to strategies that compare treatment across officers of differ-

ent races, such as Antonovics and Knight (2009) or Anwar and Fang (2006), in

that those papers use comparisons across motorist race and officer race in order

to control for the inherent racial differences in the distribution of motorists.4

Grogger and Ridgeway (2006), who pioneered the VOD test in Oak-

land, CA, and later Ridgeway (2009) in Cincinnati, OH, both find statistically

insignificant daylight versus darkness differences in the racial disparities of traf-

fic stops. In fact, for both papers, the authors note that racial disparities are

higher in darkness consistent with reverse discrimination, rather than discrimi-

nation against African-American motorists, even though the police departments

in both of these cities faced substantial criticism for discriminating against mi-

nority motorists. Given the importance of the VOD test for assessing racial

discrimination in traffic stops in the U.S., we provide a more complete assess-

ment of whether larger racial disparities in darkness can be interpreted as reverse

3Citations for these applications include Oakland, CA (Grogger and Ridgeway 2006);
Cincinnati, OH (Ridgeway 2009); Minneapolis, MN (Ritter and Bael 2009; Ritter 2017);
Syracuse, NY (Worden et al. 2010; Worden et al. 2012; Horace and Rohlin 2016); Portland,
OR (Renauer et al. 2009); Durham, NC (Taniguchi et al. 2016a); Greensboro, NC (Taniguchi
et al. 2016b); Raleigh, NC (Taniguchi et al. 2016c); Fayetteville, NC (Taniguchi et al. 2016d);
New Orleans, LA (Masher 2016); and San Diego, CA (Chanin et al. 2016)

4An important advantage is that the VOD, as compared to strategies that exploit infor-
mation on the race of police officers, can detect discrimination even when all police officers
discriminate regardless of their own race.
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discrimination. Specifically, we extend equilibrium models of racial profiling and

police-motorist interaction by Knowles, Persico, and Todd (2001), Dharmapala

and Ross (2004), Anwar and Fang (2006) and Persico (2008) to consider the

effect of race blindness caused by darkness on motorist behavior.

We develop the simplest model possible that captures several key as-

pects of expected motorist behavior in terms of speeding:

1. Police are more likely to stop motorists traveling at higher speeds but

situations exist where some motorists are stopped at speeds only modestly

above the speed limit while, at other times, motorists are not stopped for

significantly more severe speeding infractions;

2. at some times, some motorists choose to obey the speed limit;

3. a motorist who is on the margin between obeying the speed limit and

speeding will, if they decide to speed, choose a level that is discretely over

the speed limit (e.g. the choice to speed represents traveling at the speed

limit versus 3 or 4 miles per hour above as opposed to choosing the speed

limit versus 1/5th or 1/10th of a mile per hour above); and

4. when police stop costs rise, reducing the likelihood of being stopped at

any particular speed, motorists travel at higher speeds in equilibrium but

still have a reduced likelihood of being stopped (a feature critical for the

validity of the VOD test).

We first document that the properties of the VOD test are unaffected

by the behavioral changes of motorists in darkness under the null hypothesis

of equal treatment. However, we find that higher as well as lower relative

stop rates of minority groups in daylight are both potentially consistent with

discrimination. Specifically, when the likelihood of a minority being stopped

falls in darkness because race is unobserved (i.e. stop costs rise), two changes

occur: First, all else equal, minorities are less likely to be stopped and the

VOD test statistic increases above one. Second, some minorities who did not

commit an infraction during daylight are now willing to commit an infraction
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in darkness, given the high stop costs in darkness, leading to a decrease in the

VOD test statistic. These findings imply that the racial disparities identified

by Grogger and Ridgeway (2006) in Oakland, CA and by Ridgeway (2009) in

Cincinnati, OH could actually indicate the presence of discrimination.

Finally, we use our theoretical model to examine the impact of a change

in stop costs on the speed distribution of stopped motorists. Our model is de-

signed so that higher stop costs/lower likelihood of stop raise optimal infraction

levels, i.e. increases speeding. However, the shift in the speed distribution of

stopped motorists is theoretically ambiguous. We calibrate our model against

speed distribution data from Massachusetts and show that changes in stop costs

create a shift in the distribution of speeds for stopped motorists that is consistent

with the shift in the distribution of motorists overall. Therefore, the distribu-

tion of speeds for stopped motorists can be informative as to the direction of

discrimination. Admittedly, the speed distribution shifts arise based on the

beliefs of motorists, rather than the behavior of police, but such beliefs would

seem to be especially germane when the VOD test rejects the null hypothesis

of equal treatment. In particular, our theoretical model is consistent with con-

cerns raised by Bell et al. (2014) that minority motorists often fear that they

would be pulled over and experience significant “motivation to survive the law

enforcement encounter.”

Applying the VOD test to data from Massachusetts, the same data

from Antonovic and Knight (2009), we reject the null hypothesis of equal treat-

ment.5 Specifically, we establish an inter-twilight window where we observe

both darkness and daylight at the same time of day throughout the year. Con-

ditional on time of day, we find that the share of stopped motorists who are

African-American is different during the daylight than darkness. Due to our

theoretical results, however, we cannot rely on the value of the test statistic

to provide an indication of whether minority motorists are racially profiled by

police or favored in their treatment. To address this limitation of the VOD test,

5The Massachusetts data was originally reported in an article for The Boston Globe on
July 20, 2003 (Dedman and Latour 2003). Anbarci and Lee (2014) also use a subset of the
data to examine leniency in fines issued to motorists by Boston police.

5



we draw on the theoretical prediction of our model that the speed distribution

of motorists will respond to changes in visibility, and our simulation results

that imply that the speed distribution shift for stopped motorists appears to

always be in the same direction as the shift for all motorists. In particular, we

develop a supplemental test that exploits the fact that if police officers have a

preference for stopping minorities over whites then the speed distribution for

minority (white) motorists should shift to lower (higher) speeds in daylight.

We then test our hypothesis using the same local and State Police data from

Massachusetts and find a substantial negative shift in the speed distribution of

African-American motorists in daylight.

Motivated by Ridgeway (2009) and as a robustness check, we re-

examine both the VOD test and the speed distribution shifts utilizing the 90-day

window centered on the spring and fall Daylight Savings Time (DST) changes

to exploit both the relatively instantaneous change in the time associated with

darkness at the DST shift and the relatively rapid change in the time of sunset

during both the fall and spring. Unlike the traditional VOD estimation strat-

egy, this framework allows us to better control for seasonal differences in driving

behavior and the composition of motorists on the roadway by eliminating com-

parisons between driving during long summer days and early winter evenings.

We provide further validation of the robustness of our findings by examining

the speed distribution along several additional dimensions including gender and

age as well as vehicle age and color. Notably, we do not find consistent, statis-

tically significant shifts in the white speed distribution for other demographic

subgroups or vehicle characteristics. Our findings and robustness checks are

strongly consistent with African-American motorists driving slower during the

daylight because they expect to face a higher probability of being stopped than

whites at that time. When combined with the rejection of the null hypothesis of

equal treatment, this evidence supports a conclusion of racial profiling against

African-Americans in traffic stops in Massachusetts.

The paper is organized as follows: The second section begins by de-

veloping a simple model of police traffic enforcement. We examine the VOD
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test statistic first in a model where motorist driving behavior is exogenously

determined and then in a model where we make driving behavior endogenous.

After establishing that endogenous driving behavior creates a problem for the

traditional VOD test statistic, we discuss a supplemental test that indicates the

direction of discrimination. In section three, we provide a detailed calibration

of our model for Massachusetts data and conduct a simulation of our proposed

test statistic. Our simulation shows that, under reasonable conditions, the speed

distribution of stopped minority motorists will uniformly shift leftward during

daylight. The fourth section provides descriptive statistics and applies the VOD

test to our sample of Massachusetts traffic stop data where we reject the null for

no discrimination. Here, we include a series of falsification tests that show that

we are unable to identify consistent shifts in the speed distribution across other

demographic or vehicular characteristics. The fifth and final section concludes

the paper and identifies areas in need of additional research.

2 Theoretical Model

This section explores police-motorist interaction in a model of traffic enforce-

ment. The first two subsections begin by developing a model of traffic enforce-

ment and examining the implications of standard statistical tests of disparate

treatment. The third subsection examines the VOD test in the context of our

model of traffic enforcement. The fourth subsection develops an equilibrium

model of motorist behavior conditional on traffic enforcement and examines the

VOD test in that context. We demonstrates that the VOD test continues to be

valid under the null hypothesis of equal treatment. However, under the alterna-

tive hypothesis, interpretation of the resulting test becomes problematic when

examined in the context of endogenous motorist behavior.

Our model illustrates that both minority and white motorists will ra-

tionally respond to changes in visibility by altering their driving behavior when

faced with disparate treatment. Specifically, in darkness when race is unob-

served, the changes in police behavior will lead to more minority motorists
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committing infractions and less white motorists committing infractions, and so

discrimination against minorities can in principle lead to either a lower or higher

minority share of stops in daylight relative to darkness. In the final subsection,

we propose a theoretically motivated alternative to the VOD test for gaining

insights into the direction of unequal treatment based on comparing the speed

distribution of stopped minority motorists during periods of daylight and peri-

ods of darkness. The advantage of our test is that it is more robust to changes

in motorist behavior than the magnitude of the VOD test for indicating the

direction of differential treatment.

2.1 Developing a Simple Model of Traffic Enforcement

We begin by structuring the police officer’s decision as the choice of selecting

probability γ(i, d, φ) of making a stop. The officer’s choice or decision is made

after observing a non-negative infraction severity, i, e.g. miles per hour over

the speed limit; a motorist’s demography, d; and the circumstances surrounding

the stop, φ, which might include both environmental factors and factors related

to officers’ idiosyncratic preferences and current circumstances. We assume for

simplicity that d ∈ {m,w} is a dichotomous random variable that indicates

whether the motorist is a racial or ethnic minority, and sd is the positive police

stop cost associated with motorist race and ethnicity.

The officer’s maximization problem involves trading-off the stop pay-

off, u, and stop costs, which includes both race specific costs and a circumstance

cost defined by the function h(φ). The maximization problem takes the follow-

ing form:

max
γ(i,sd,φ)

[u(i)− h(φ)− sd]γ(i, sd, φ), (1)

where γ ∈ [0, 1]. We make the following assumptions about police pay-offs and

costs:

Assumption 2.1. u is a twice differentiable, non-negative function, du(i)
di > 0
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and d2u(i)
di2 > 0 ∀i > 0, limi→0 u(i) = u0 > 0 and u(0) = 0;

Assumption 2.2. φ ∼ Uniform(0, 1);

Assumption 2.3. h is a twice differentiable, non-negative function, dh(φ)
dφ >

0 ∀ 0 ≤ φ ≤ 1, h(0) = 0 and limφ→1 h(φ) =∞;

Assumption 2.4. u0 − sd > 0 ∀d

We assume u is discontinuous at zero so that the officer receives no

pay-off for stopping a motorist who has a zero level of infraction, but has a pay-

off bounded away from zero for any positive infraction level. This assumption is

consistent with the current penalty structures in many states. We also assume

that u has increasing total and marginal pay-off with respect to the severity of

the infraction. The officer faces two costs for stopping a motorist: sd, a race

specific cost for stopping a motorist (henceforth, stop costs), and an additional

circumstance specific cost, and h(φ) resulting from factors like the officer’s id-

iosyncratic preferences, geographic location, discretion, and contemporaneous

opportunity cost (henceforth, circumstances).

The introduction of circumstances allow for heterogeneity in whether

individuals are stopped at a specific infraction level. The circumstances are

drawn from a uniform (0,1) distribution without loss of generality because the

monotonic function h(φ) captures possible non-linearities in the mapping be-

tween circumstances φ and an officer’s net pay-off. We do not impose a sign

restriction on the second derivative of h to allow for generality over circum-

stance costs. For example, if circumstance costs were distributed unimodally

over R+ such as a chi-square distribution, the curvature of h must change sign

over the range of φ. Finally, assumption 2.4 requires a positive net pay-off for a

stop under some circumstances φ, even for an infinitesimally small positive level

of infraction i. This effectively insures that the probability of stop is bounded

away from zero for any motorist with a non-zero infraction level and so allows

for a situation where motorists might choose not to commit an infraction.

Conditional on circumstances φ, demography d and the level of in-

fraction i, the solution to the officer’s problem requires an optimal infraction
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threshold, above which the probability an officer makes a stop, given full in-

formation, is equal to unity and otherwise the probability is zero due to the

monotonic relationship between pay-off and the severity of motorist violation.

Specifically, given the officer’s net utility of u(i)− h(φ)− sd ∀ i, the solution to

her utility maximization problem is

γ(i, sd, φ) =

1, if u(i) > h(φ) + sd

0, otherwise.

Further, solving for zero net pay-off implies that an officer will stop all mo-

torists at any infraction level above some threshold level following a specific

stop-threshold function of

i∗(φ, sd) = u−1[h(φ) + sd] (2)

where u−1 maps from (u0,∞) to (0,∞) and h(φ) + sd is always greater than

u0. Finally, conditional on infraction severity and exploiting the monotonicity

of h(·), we can solve (2) for the circumstances when the net pay-off of a stop is

zero φ∗(i, sd), and officers will stop individuals with infraction level i whenever

circumstances are more favorable than φ∗(i, sd), i.e. φ < φ∗(i, sd). The resulting

expression for the stop threshold over circumstances is

φ∗(i, sd) = h−1[u(i)− sd], (3)

where h−1 maps from (0,∞) to (0, 1) and u(i) − sd is always greater than

zero. Recall that φ is distributed uniform (0,1); thus (3) also represents the

unconditional (i.e. circumstances have not been observed) probability that an

officer stops a motorist with infraction level i.

Lemma 1. (i) The infraction level representing the optimal stop-threshold, i∗ =

u−1[h(φ)+sd], is increasing in officer circumstances and demographic based stop

costs sd.
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(ii) The probability of an officer making a stop, φ∗(i, sd) = h−1[u(i) − sd], is

decreasing in stop costs sd and increasing in the level of infraction i.

Assumption 2.1 and the Inverse Function Theorem imply that u−1
′
(·) > 0 over

its domain (u0,∞). Then by inspection it is clear that the derivative of Equation

(2) implies ∂i∗

∂φ > 0, ∂i
∗

∂sd
> 0. Assumption 2.3 and the Inverse Function Theorem

imply that h−1
′
(·) > 0, and by inspection it is clear that the derivative of

Equation (3) implies ∂φ∗
∂sd

< 0, and ∂φ∗

∂i > 0. QED

If the officer’s behavior is racially blind, e.g. the cost of stopping

motorists is equal across race sm = sw, the stop-threshold and the stop proba-

bility would be constant across demographic groups, i∗(φ, sm) = i∗(φ, sw) and

φ∗(i, sm) = φ∗(i, sw), respectively. In the presence of disparate treatment, how-

ever, the cost faced by an officer for stopping a minority motorist is lower than

a white motorist, sm < sw, implying that the stop-threshold for stopping a

minority is lower than that for a white, i∗m < i∗w. Definition 1 below presents

this formally.

2.2 Standard Test for Disparate Treatment

We define the distribution f (i, d) as a mixed joint density function of motorists

who commit an infraction over the continuous measure of infraction severity, i,

and the dichotomous random variable of motorist demography, d. The distri-

bution represents the motorists on the roadway, in terms of their demographic

characteristics and driving behavior, who are at risk of being stopped by police

officers. As such, we refer to f (i, d) as the risk set of motorists. We also implic-

itly assume that f (i, d) is equivalent to the analogous distribution of motorists

seen by police.

Definition 1. A police officer is racially biased against minorities of demog-

raphy d = m if they incur a lower cost, sm < sw, for stopping these motorists

and, as a result, has a lower threshold, i∗(φ, sm) < i∗(φ, sw), for making a traffic

stop.
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Given the speed distributions of white and minority motorists, and

using (3), the probability that a motorist who is stopped by police is of de-

mography d is written formally by integrating over the product of the speed

distribution and the stop probability function φ∗. We first define the indicator

stopped as

stopped =

1, if φ < φ∗(i, sw) and d = w or φ < φ∗(i, sm) and d = m

0, otherwise.

(4)

Then

p[d | stopped] =

∫∞
0

f (i, d)φ∗(i, sd)di∑
d′∈{m,w}

∫∞
0
f(i, d′)φ∗(i, s′d)di

. (5)

The standard test for disparate treatment in police officer stops, i.e. ratio of

minorities stopped relative to whites, can be written as:

K =
p[m | stopped]

p[w | stopped]
=

∫∞
0

f (i,m)φ∗(i, sm)di∫∞
0

f (i, w)φ∗(i, sw)di
. (6)

Based on Definition (1), the null hypothesis of no disparate treat-

ment for the standard test in (6) equates officer costs across demographic

groups, sm = sw, yielding an equal likelihood of being stopped at any i,

φ∗(i, sm) = φ∗(i, sw). Assuming the risk set is constant across demographic

groups, f (i,m) = f (i, w), under the null hypothesis the standard test will equal

unity, p[m | stopped]/p[w | stopped] = 1. In practice, the relevant minority and

white populations may differ in size, and the ratio K is compared to an esti-

mate of the community composition testing whether the minority-white ratio of

stopped motorists matches the minority-white ratio of residents or motorists in

the community.

However, this test statistic may not equal the minority-white ratio in

the community under the null hypothesis if the distribution of infractions or

risk set of motorists differs across demographic groups. Racial differences in the

distribution of infractions is referred to in the racial profiling literature as the
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infra-marginality problem (see Anwar and Fang 2006; and Knowles et al. 2001).

2.3 Examining the Veil of Darkness Approach in a Model

of Traffic Enforcement

Grogger and Ridgeway (2006) attempt to carefully sidestep the infra-marginality

problem by developing an alternative procedure for measuring racial differences

in the risk set, i.e. the Veil of Darkness (VOD) approach, that relies on a

variation in visibility due to solar variation. The advantage of their procedure

is that it requires no external information on the relative risk set of motorists

on the roadway. The identification strategy and estimation procedure rely on

seasonal patterns of solar variation and discrete shifts in visibility created by

Daylight Savings Time (DST) changes. Identification in the VOD comes from

the assumption that police officers are better able to perceive the demography

of a motorist during daylight hours, and so these shifts in visibility create cir-

cumstances where race is unobserved and circumstances where race is observed

for which the risk set is stable across these circumstances because the location

and the time of day are held constant.

Specifically, the test statistic assesses whether there is a higher like-

lihood of a minority motorist (relative to a non-minority) being stopped by

police in the presence of daylight (relative to darkness). We incorporate Grog-

ger and Ridgeway’s identification strategy in our model by denoting visibility

with v ∈ {v, v}, where we assume that periods of darkness occur at the lower

bound of visibility v and daylight occurs at the upper bound v.

Recall the officer’s maximization problem from (1):

max
γ(i,sv,d,φ)

[u(i)− h(φ)− sv,d]γ(i, sv,d, φ), (7)

where γ ∈ [0, 1].

We continue to make Assumptions 2.1 - 2.4 about police behavior but

will now further assume:
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Assumption 2.5. sv = sv,m = sv,w; and

Assumption 2.6. sv ∈ (sv,m, sv,w) or sv = sv,m = sv,w.

The first of these two assumptions requires that stop cost be equal across groups

during low visibility, v, because race is unobserved. The second assumption

requires that sv be between the stop costs for minority and white motorists

following the logic that if race is unobserved stop costs will be an unknown

weighted average of the minority and white stop costs. Accordingly, under the

null of equal treatment, sv is equal to the high visibility costs, sv, for all groups.

The basic structure of the officer’s problem remains unchanged between (1) and

(7) as does Definition 1 and Lemma 1. As such, the solution to her utility

maximization problem in low visibility can be written as:

γ(i, sv,d, φ) =

1, if i ≥ i∗(φ, sv)

0, i < i∗(φ, sv).

As before, we use the officer’s net utility to derive the equilibrium

circumstances stop-threshold for a given infraction severity in low visibility,

φ∗(i, sv) = φ∗(i, sv,m) = φ∗(i, sv,w) for any i, which, like the officer’s stop cost,

is also bounded by the circumstance stop-thresholds in high visibility so that

either φ∗(i, sv) ∈ (φ∗(i, sv,w), φ∗(i, sv,m)) or under the null of equal treatment

φ∗(i, sv) = φ∗(i, sv,w) = φ∗(i, sv,m) .

In the context of our theoretical model, a VOD test for disparate treat-

ment can be written formally as:

KV OD =
p[m | stopped, v]p[w | stopped, v]

p[w | stopped, v]p[m | stopped, v]

=

∫∞
0

f (i,m)φ∗(i, sv,m)di
∫∞
0

f (i, w)φ∗(i, sv)di∫∞
0

f (i, w)φ∗(i, sv,w)di
∫∞
0

f (i,m)φ∗(i, sv)di
.

(8)

where the definition of stopped in the previous section is refined to be conditional

on visibility, i.e. φ∗ is based on sv,d. In practice, Grogger and Ridgeway (2006)

propose regressing race on visibility conditional on time of day and day of week

fixed effects in order to test for differences in the likelihood that the motorist
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who was stopped belongs to the minority group. We verify for our data that

the implications of this test statistic are always consistent with the results of an

equivalent Grogger and Ridgeway (2006) style regression.

Under the null hypothesis of racially blind policing where sv = sv,m =

sv,w, φ∗(i, sv) = φ∗(i, sv,m) = φ∗(i, sv,w), and (8) is equal to one. Under the

alternative hypothesis of disparate treatment where sv,m < sv < sv,w and

φ∗(i, sv,w) < φ∗(i, sv) < φ∗(i, sv,m), (8) is greater than one. Therefore, our

model of policing generates implications for this VOD test statistic that are

consistent with Grogger and Ridgeway’s use of the VOD test as a control for

demographic differences in the distribution of motorist’s driving behavior.

This identification strategy appears very reasonable when motorist be-

havior is exogenous, but may be problematic if motorists respond to visibility

in their driving behavior. Motivated by Anwar and Fang (2006) and Knowles

et al. (2001), we extend our model to a setting where the motorist’s decision

is an endogenous function of the stop-threshold, and as noted above, the stop

threshold varies with solar visibility because officers cannot observe race. We

then use this framework to consider further implications for the VOD test and

the assumption of a constant relative risk set over solar visibility.

2.4 An Equilibrium Model of Motorist Driving Behavior

The simple model above ignores potential changes in the equilibrium behavior of

motorists. However, we expect that motorists will adjust their infraction levels

in response to changes in officer stop costs. Additionally, the definition of racial

bias in a VOD context implies that changes in officer stop cost over visibility

varies across demographic groups.

The motorist’s utility maximization problem, over infraction level,

takes the following form:

max
i(c,sd)

b(i, c)− τ(i)

∫ φ∗(i,sv,d)

0

Γ(φ)dφ (9)

where b(i, c) is the motorist pay-off for committing an infraction of a given level
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i, c is a motorist preference parameter, τ is motorist costs associated with be-

ing stopped when committing an infraction, and Γ(φ) is the probability density

function of φ distributed as uniform (0,1). We make the following assumptions

about motorist behavior:

Assumption 2.7. b is a twice differentiable, non-negative function, ∂b
∂i > 0, and

∂2b
∂i2 < 0 ∀ c and i ≥ 0, and b(0, c) = 0 and limi→∞

∂b
∂i = 0 ∀ c;

Assumption 2.8. ∂b
∂c > 0 and ∂2b

∂c∂i > 0 ∀ c and for i > 0;

Assumption 2.9. τ is a twice differentiable, positive function, dτdi > 0 and d2τ
di2 >

0 for i ≥ 0, and τ(0) > 0;

Assumption 2.10. ∂b
∂i

∣∣
i=0
≥ dτ

di

∣∣
i=0

h−1[u0 − sv,d] + τ(0)h−1
′
[u0 − sv,d] ∀ c;

Assumption 2.11.
d2u
di2
du
di

≥ −h
−1′′ (·)

h−1′ (·)
∂u
∂i ∀i ≥ 0.

Assumption 2.12. c ∼ g(c, d) where there exists a ch,d such that g(c, d) = 0 ∀c >

ch,d and g(ch,d) > 0.

The motorist maximizes the expected pay-off function in (9) with

respect to infraction severity. She takes the probability of being stopped,

γ(i, sv,d, φ), from the officer’s problem as given and integrates over the dis-

tribution of possible circumstances, φ. As such, the motorist compares the

expected marginal benefits and costs when choosing an optimal i′. The term,

c, captures motorist heterogeneity through context, e.g. recklessness, timing,

sleep deprivation, etc. We assume that the motorist benefit or pay-off is an

increasing function of infraction severity and that marginal benefit is dimin-

ishing. Additionally, both the benefit and the marginal benefit of infracting

rise with recklessness, c. This assumption simply initializes the direction of the

effect of this parameter on motorist benefit. We assume that the motorist’s

cost and marginal cost are increasing in infraction severity, and motorist’s cost

is bounded away from zero for infinitesimally small infraction levels, which is

required to assure that some motorists choose not to commit an infraction. The
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cost function is assumed to be invariant to recklessness. We also assume, at low

levels of infraction, the marginal benefit of increasing infraction level is higher

than the marginal cost of increasing infraction level in order to assure an interior

solution for motorists who choose to commit an infraction. Finally, we impose

two technical assumptions. The first assumption is that the relative curvature

(curvature relative to the slope) of the officer’s utility function exceeds in mag-

nitude the relative curvature of h−1 associated with the officer’s circumstance

based stop costs in order to sign the second order condition of the motorist’s

problem. The second assumption is that the distribution of c or recklessness

is bounded above and has non-zero density at that bound. This assumption

facilitates the proof of proposition 1, but in the simulations the implications of

proposition 1 appear to hold for distributions with non-zero density over R, as

well.

Lemma 2. There exists a unique, non-negative optimal infraction level i′ for a

motorist of type {c, d}. The optimal infraction level is increasing in criminality,

c, whenever infraction levels are positive.

We first rewrite (9) using Assumption 1.2, that φ follows a uniform distribution,

and∫ φ∗(i′ ,sd)
0

Γ(φ) dφ = φ∗
(
i
′
(c, sd) , sd

)
as

max
i′ (c,sd)

b(i, c)− τ(i)φ∗(i, sd). (10)

Thus, the motorist will solve the maximization problem in (10) by choosing an

optimal infraction level that satisfies the following first-order condition:

FOC ≡ ∂b(i, c)

∂i
− dτ(i)

di
φ∗(i, sv,d)− τ(i)

∂φ∗(i, sv,d)

∂i
= 0. (11)

By Assumption 2.7, the first term in (11) is positive, and by Assumption 2.9 and

Lemma 1 the second and third terms are negative when including the subtraction

signs. Assumption 2.10 implies that the left hand side of (11) is positive at i = 0.

Assumption 2.7 requires that the first term go to zero as i limits to infinity,
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and Assumption 2.9 implies that the second term is non-zero. Therefore, by

continuity of all functions overR+, a positive solution to (11) exists. The second-

order condition of the motorist’s problem excludes the possibility of multiple

equilibria and can be written formally as:

SOC ≡ ∂2b(i, c)

∂i2
− d2τ(i)

i2
φ∗(i, sv,d)− 2

dτ(i)

di

∂φ∗(i, sv,d)

∂i

− τ(i)
∂2φ∗(i, sv,d)

∂i2
< 0.

(12)

The first term in (12) is negative based on Assumption 2.7, the second term

is negative based on Assumption 2.9, and the third term is negative based

on Assumption 2.9 and Lemma 1. The final term is negative as well assur-

ing uniqueness. In order to show why the final term is negative, we draw on

the solution of the officer’s problem and the monotonicity of h(·). Recall that

φ∗(i, sv,d) = h−1[u(i)−sv,d]; we use this expression to expand the second deriva-

tive of φ∗ from Equation (3):

∂2φ∗(i, sv,d)

∂i2
=

(
du(i)

di

)2

h−1
′′
(u(i)− sv,d) +

d2u(i)

di2
h−1

′
(u(i)− sv,d). (13)

The first term is ambiguous, but the second term is positive and dominates the

first term in the equation based on Assumption 2.11. Therefore, as long as the

curvature of h−1 is not too large, there exists a unique positive value of i∗∗ that

maximizes motorist payoff over R+ conditional on c and sv,d. If this maximum

pay-off is positive, then i′ = i∗∗; otherwise, i′ = 0 yielding a pay-off of zero.

By total differentiation of the first order condition in (11), it is easy to

show that the optimal infraction level i∗∗ is increasing in criminality. Therefore,

di′

dc
=
di∗∗

dc
= −

∂2b
∂c∂i

SOC
> 0 ∀c and sv,d such that i′ > 0,

where SOC is the expression for the second order condition in (12) and is nega-

tive as shown above, and the sign of the numerator is established by Assumption

2.8. QED
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Figure 1 provides examples of optimal infraction levels i∗∗ over differ-

ent values of the preference parameter c. The dashed line designates motorist

expected costs by infraction level, and the solid line designates motorist pay-off.

The vertical dotted line designates the optimal speed i∗∗ for a specific value of

c where the cost and benefit curves are parallel.

Note that the optimal infraction level may not be increasing unam-

biguously with sv,d. In order to see this, we present the derivative of the first

order condition with respect to sv,d:

∂(FOC)

∂sv,d
= −∂τ

∂i

∂φ∗

∂sv,d
− τ(i)

∂2φ∗

∂i∂sv,d
.

The first term is positive consistent with increases in infraction level as stop costs

rise. The second term is ambiguous because it depends upon h−1
′′
(·). In order

to assure an equilibrium where motorists behave as expected, i.e. increasing

infraction level when the stop costs of police increase, we impose the following

assumption:

Assumption 2.13.
∂τ
∂i

τ(i) >
−h−1′′ (·)
h−1′ (·)

∂u
∂i ∀i ≥ 0.

This again limits the curvature of the second derivative of h−1, and assures that

di
′

dsv,d
> 0.

In practice, this assumption holds in our simulations.

Lemma 3. For any set of functions satisfying assumptions 2.1 through 2.12,

there exist parameter values such that a threshold c∗ exists, above which mo-

torists commit a traffic infraction at the optimal level i
′
, and below which mo-

torists do not commit an infraction in equilibrium. For such parameter values,

limc→c∗ i
′
> 0 for c above c∗, and c∗ is decreasing in sv,d.

The proof proceeds by construction. Assume a benefit function b(i, c). Based

on Assumption 2.8, this benefit function approaches a finite maximum value
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b(c) for any c as i increases. Now pick an arbitrary value of c. Assumption

2.4 assures that limi→0 φ
∗(i, sv,d) = φ∗(sv,d) > 0. Therefore, we can set the

officer and motorist cost parameters so that τ(0)φ∗(sv,d) > b(c). For this cost

function, a motorist of type c never speeds and τ(i)φ∗(i, sv,d) always lies above

b(i, c). Now, because τ and b are differentiable and the second order condition

in the motorist problem is always negative, we can slowly and continuously

reduce the function τ by multiplying by a decreasing positive scaler less than

1 (where the scaler effectively acts as a parameter of the cost function) until

τ(i)φ∗(i, sv,d) just touches the function b(i, c) at one point. Given that the slope

of the benefit function over i at i = 0 is steeper than the slope of τ(i)φ∗(i, sd),

the two curves will touch, yielding zero net benefits, at a positive value of i. For

the selected parameters, the arbitrarily chosen c equals c∗. The benefit curves

for all values of c below c∗ lie below the benefits curve for c∗ (and similarly,

all curves lie above for c above c∗). Therefore, for c below c∗, net benefits are

always negative, and for c above c∗, net benefits are positive over some range of

i of R+.

In the proof of Lemma 2, we show that the optimal infraction level

i∗∗ is positive for all c and that the function i∗∗ is monotonically increasing

in c. Therefore, for values of c below c∗, i∗∗ is positive and must lie below

the optimal infraction level for any c greater than c∗. This implies that the

optimal infraction level for any c greater than c∗ is bounded away from zero, or

limc→c∗ i
′
> 0 for all c > c∗.

An increase in sv,d unambiguously lowers φ∗(i, sd) holding τ fixed. At

the c∗ above, the cost curve shifts down and net benefits are positive. Therefore,

a new tangency between the two curves holding b(i, c) and τ(i) fixed requires a

decrease in c∗ in order to lower the benefits curve down to just touch the now

lower τφ∗(i, sv,d). QED

Figure 1 helps illustrate the implications of Lemma 3. For very low

values of c, i.e. in the upper row of graphs in Figure 1, the cost of committing

an infraction always lies above the pay-off, but as c rises the benefit or pay-

off curve crosses the cost curve and an optimal, non-zero infraction level with
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positive net benefits exists. Thus, drawing from a large population of c allows

us to construct a representative speed distribution. Figure 2 illustrates this for

c’s drawn from a skew normal distribution as in our simulations below.

We can use the distribution of motorists over race and recklessness,

g(c, d), to re-write (8), where we subscript to annotate that the risk set is now

endogenous (ERS), such that:

KERS =
p[m | stopped, v]p[w | stopped, v]

p[w | stopped, v]p[m | stopped, v]

=

∫ ch
c∗

g(c,m)φ∗(i
′
(c, sv,m), sv,m)dc

∫ ch
c∗

g(c, w)φ∗(i
′
(c, sv), sv)dc∫ ch

c∗
g(c, w)φ∗(i′(c, sv,w), sv,w)dc

∫ ch
c∗

g(c,m)φ∗(i′(c, sv), sv)dc
,

(14)

where ch is the maximum value of c in the distribution.

Proposition 1. Under the null hypothesis of racially blind policing where sv =

sv,m = sv,w and i∗v = i∗v,m = i∗v,w, KERS is equal to one. However, under the

alternative hypothesis where sv,m < sv < sv,w and i∗v,m < i∗v < i∗v,w, parameters

exist for any set of functions satisfying assumptions 2.1 through 2.12 such that

KERS < 1 in equilibrium.

The first piece of Proposition 1 is trivial by inspection. Under the null, stop

behavior is unaffected by visibility and so the daylight probability of stop for

each group cancels with its darkness probability.

The proof of the second half of the proposition proceeds by construc-

tion. First, based on Assumption 2.12, we impose distributions of c for whites

and African-Americans that both have the same finite maximum ch with a

non-zero density at that maximum. By Assumption 2.8, the benefit function

approaches a finite maximum value b(ch) as i increases, and Assumption 2.4

assures that limi→0 φ
∗(i, sd) = φ∗(sd) > 0. Therefore, we can set the officer

and motorist cost parameters so that τ(0)φ∗(snull) > b(ch,d), subject to the

requirement under the null hypothesis that snull=sv = sv,w = sv,m. Now,

because τ and b are differentiable and the second order condition in the mo-
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torist problem is always negative, we can slowly and continuously reduce the

function τ by multiplying by a decreasing positive scaler κ less than 1 until

τ(i)φ∗(i, snull) just touches the function b(i, ch,w) at one point which based on

Lemmas 2 and 3 will be at a positive value of i. We define the κ where this

occurs as κ∗. This construction assures that no one has an incentive to commit

an infraction and white and African-American motorists with c = ch are indif-

ferent between committing an infraction and not. KERS is not defined under

the current construction because the set of motorist for which stopped = 1 is

empty or more formally contains at most a set of motorists of measure zero.

However, KERS always equals 1 under the null hypothesis for non-empty sets,

and so limκ→κ∗ KERS = 1 for any κ > κ∗ because for all κ > κ∗ a positive

measure of African-American and white motorists commit infractions under the

null.

Now, for some κ > κ∗, we consider a marginal departure from the

null hypothesis where sv,w increases and sv,m decreases while holding sv fixed

at snull. Recall from (5) and (6) that the probability that a motorist who is

stopped in high visibility by police is white has a numerator that depends only

upon sv,w, and that the denominator cancels out with the denominator for the

probability that a motorist is stopped is minority in 14. The numerator can be

written as

NUMw ≡
∫ ch

c∗
g(c, w)φ∗(i

′
(c, sv,w), sv,w)dc. (15)

The derivative of this term with respect to sv,w is

d(NUMw)

dsv,w
=− ∂c∗

∂sv,w
g(c∗, w)φ∗(i′(c∗, sv,w), sv,w)

+

∫ ch

c∗
g(c, w)

(
∂φ∗

∂sv,w
+
∂φ∗

∂i

di′

dsv,w

)
dc.

(16)

A positive derivative in (16) increases the denominator in (14) and reduces

KERS to a value below 1 for a small increase in white high visibility stop costs,

sv,w, near the null hypothesis. The first term in the expression is unambiguously

positive based on Lemma 3 and the non-zero density at ch. Further, the limit of
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the second term as κ approaches κ∗ is zero because the lower limit of integration

c∗ equals ch at κ∗ and the integrand is finite. Therefore,

lim
κ→κ∗

d(NUMw)

dsv,w
> 0 (17)

and by continuity there exist κ′ above κ∗ where the derivative is positive for

all κ∗ < κ < κ′. For changes in minority stop costs, the same two terms arise

for the derivative of the numerator of the probability that a stopped motorist is

minority. As before, the integral term, which is equivalent to the second term in

(16), limits to zero. The equivalent term to the first term in (16) will dominate

the second term equivalent for all κ less than some κ′ as long as κ′ is sufficiently

close to κ∗. However, an increase in disparate treatment implies a decrease in

minority stop costs and so the change in the expression for κ near κ∗ reduces

the numerator of KERS reinforcing the effect of increasing white stop costs.

Therefore, we can always find a κ close enough κ∗ so that the effect of entering

white motorist and exiting minority motorists during high visibility dominate

any effects of changes in stop probability and driving speed yielding a KERS

less than one. QED

Consider a jurisdiction where motorists face disparate treatment, sv,m <

sv < sv,w. In our partial equilibrium treatment of the VOD test, we show that

the relative probability that a stopped motorist is minority increases during day-

light. However, this result no longer holds once we endogenize speed through

the motorist’s problem in the equilibrium setting. The intuition of our finding

is relatively straightforward; there will be two competing effects associated with

a change from high to low visibility. On the one hand, an officer will face a rela-

tively higher cost for stopping white motorists during high visibility, thus white

motorists are in all probability less likely to be stopped even if they are travelling

faster. On the other hand, infra-marginal motorists, who were close to indiffer-

ent between committing an infraction and not, will respond to changes in stop

costs by altering their driving behavior and committing infractions, increasing

the representation of whites and reducing the representation of minorities in the
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pool of stopped motorists in high visibility. As is apparent in our formal model,

these effects will push the VOD test statistic in opposing directions. Thus, the

magnitude of (14) will depend on the size of these two competing effects, and

the size of the first term in (16) will depend upon the density of motorists at

c∗. If c follows a traditional unimodal distribution with very low densities at

extreme values of c, the size of this first term will be positively related to the

share of infra-marginal motorists or motorist who do not commit infractions, a

share that is typically unobserved in empirical research on police stops.

The implication of our findings on the empirical application of VOD

is of critical importance. Grogger and Ridgeway (2006) and Ridgeway (2009)

apply the VOD to data collected by jurisdictions in response to repeated com-

plaints of racial profiling. The authors concluded that the test “yields little

evidence of racial profiling” in Oakland, CA (Grogger and Ridgeway 2006, p.

886) and that “African-American motorists were less likely to be stopped dur-

ing daylight” in Cincinnati, OH (Ridgeway 2009, p. 14). These conclusions

were made based on findings, in both jurisdictions, that minority motorists were

stopped less frequently in daylight indicating potential “reverse racial profiling”

(Grogger and Ridgeway 2006, p. 884). As shown in the preceding section, these

conclusions are potentially incorrect given the possibility that the relative risk

set of motorists varies in response to changes in solar visibility. The evidence in

these papers is entirely consistent with either white or minority motorists being

favored by police. In the next subsection, we will investigate the possibility

that shifts in the speed distribution might provide insights into the direction of

differential treatment when equal treatment is rejected by the VOD test.

2.5 An Alternative Test for Disparate Treatment

In our model, recall that disparate treatment occurs during daylight and is

represented by lower stop costs for minority motorists, e.g. sv,m < sv,w. Since

darkness makes it difficult for police to discern the race of a motorist before

making a traffic stop, the VOD test proposes that officers face a common sv
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during darkness. Further, we assume that the stop costs in darkness are bounded

such that sv,m < sv < sv,w. Previously we show that under the alternative

hypothesis (i.e. in the presence of disparate treatment), the magnitude of the

VOD test statistic relative to 1 does not unambiguously determined the direction

of discrimination. As an alternative to interpreting the magnitude or sign of

the VOD test, we propose to directly examine the speed distribution of stopped

motorists exploiting the same solar variation used in the VOD test. Intuitively,

if the police stop cost falls for a group in daylight raising the probability of stop

at all speeds, individuals in this group will decrease their optimal speed, and

testing for shifts in the speed distribution will provide insights into whether stop

costs are higher during high or low visibility for a given group.

However, we do not observe the speed distribution of all motorists, but

rather we only observe the speed distribution of motorists who are stopped by

police. Therefore, we need to examine the impact of differences in stop costs

on the speed distribution conditional on being stopped. We begin by writing a

function for one minus the CDF of the speed distribution for motorists whom

police stop which requires integrating over both motorist preferences, c, and

officer circumstances, φ, in order to capture the share of motorists stopped at

any speed or higher for a given group relative to the total number of motorist

stopped of that group. If the derivative of this expression (one minus the CDF)

with respect to stop costs is positive for all speeds or infraction levels, then an

increase in stop costs unambiguously shifts the speed distribution of motorists

upwards or to the right. Such a result would allow us to test for the direction

of discrimination, conditional on VOD based evidence of differential treatment,

by examining the change in the speed distribution of stopped motorists between

daylight and darkness for each race.

Our first step is to place conditions on the model so that the equilib-

rium probability of stop changes in the expected manner when stop costs rise.

Specifically, when stop costs rise, motorists drive faster because of lower stop

probabilities, but we do not expect motorists to drive so much faster that the

higher speeds actually more than undue the original decline in stop probabili-
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ties that was the reason behind the faster speeds in the first place. The total

derivative of φ∗ is

dφ∗

dsv,d
=

∂φ∗

∂sv,d
+
∂φ∗

∂i

di′

dsv,d
(18)

Notice that the first term implies a direct lower probability of being stopped

from higher stop costs, but the second implies an increase in stop probability

as optimal speed increases.

If we assume,

Assumption 2.14. ∂u
∂i

di′

dsv,d
< 1

and use the solution for φ∗(i, sd) = h−1 (u(i)− sv,d) in Equation (3), it can be

shown that

dφ∗

dsv,d
=

∂φ∗

∂sv,d
+
∂φ∗

∂i

di′

dsv,d
= −h−1

′
(u(i)− sv,d)

(
1− ∂u

∂i

di′

dsv,d

)
< 0 (19)

We recognize that Assumption 2.14 is not ideal because it is based on an equi-

librium function. However, the imposition of an assumption that individuals do

not completely undo exogenous changes in incentives through their behavioral

adjustments is relatively standard. Further, this assumption works in favor of

the VOD test as a mechanism for distinguishing between disparate treatment of

minorities and reverse discrimination in that it assures that at least the second

term in (16) is consistent with disparate treatment against minorities yielding

KERS > 1. Further, the assumption appears to always hold in our simulations

below.

Our second step is to define the level of criminality c as a function of

a motorists optimal speed i′. Specifically, we can invert the monotonic function
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i′(c, sv,d) in order to obtain a monotonic function

c′ ≡ c′(i, sv,d) such that i = i′(c′(i, sv,d), sv,d) ∀i > 0 (20)

Lemma 4. The level of criminality, c′, consistent with an optimal infraction

level, i, can be expressed as a function c′(i, sv,d) that is increasing in the severity

of infraction and decreasing in stop cost.

The monotonicity of i
′
(c, sv,d) and the Inverse Function Theorem imply that

there will be a one-to-one monotonic mapping from i′(c, sv,d) to c′(i, sv,d) as

shown in the equality in (20). We differentiate this equality with respect to i

and sv,d yielding

1 =
∂i′

∂c

∂c′

∂i
and 0 =

∂i′

∂c

∂c′

∂sv,d
+

∂i′

∂sv,d
(21)

Accordingly, Lemma 2 and the above equations imply

∂c′(i′, sv,d)

∂i′
=

(
∂i′

∂c

)−1
> 0 and

∂c′(i′, sv,d)

∂sv,d
= − ∂i′

∂sv,d

(
∂i′

∂c

)−1
< 0. QED

Now, we define G̃ as one minus the CDF of the speed distribution conditional on

being stopped (suppressing the visibility subscript and the minority subscript

from the distribution over c for convenience) as

G̃(i) ≡

∫ ch
c′(i,sd)

∫ φ∗(i′(c,sd),sd)
0

g(c)Γ(φ) dφdc∫ ch
c∗(sd)

∫ φ∗(i′(c,sd),sd)
0

g(c)Γ(φ) dφdc
. (22)

We utilize the equilibrium mapping from i to c in the motorist’s problem to

capture the portion of the distribution of motorists that travel above i, and

we use the function c∗ that identifies the value of c at which motorists are

indifferent between committing an infraction or not in order to establish the

population of stopped motorists in the denominator. Note that the density of
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c can be factored out of the first integral, and recall that because φ follows a

uniform distribution the resulting integral can rewritten as
∫ φ∗(i′,sd)
0

Γ(φ) dφ =

φ∗ (i′ (c, sd) , sd). Equation (22) is then equivalent to:

G̃(i) =

∫ ch
c′(i,sd)

g(c)φ∗ (i′ (c, sd) , sd) dc∫ ch
c∗(sd)

g(c)φ∗ (i′ (c, sd) , sd) dc
. (23)

Next, we calculate the derivative of (23) with respect to sd as

dG̃(i)

dsd
=−

dc′(i,sd)
dsd

g (c′ (i, sd))φ
∗ (i′ (c′ (i, sd) , sd) , sd)∫ ch

c∗(sd)
g(c)φ∗ (i′ (c, sd) , sd) dc

+

∫ ch
c′(i,sd)

g(c)dφ
∗(i
′
(c,sd),sd)
dsd

dc∫ ch
c∗(sd)

g(c)φ∗ (i′ (c, sd) , sd) dc

+

(∫ ch
c′(i,sd)

g (c)φ∗ (i′ (c, sd) , sd) dc
)
dc∗

dsd
g(c∗)φ∗(i

′
(c∗, sd), sd)(∫ ch

c∗
g(c)φ∗ (i′ (c, sd) , sd) dc

)2
−

(∫ ch
c′(i,sd)

g (c)φ∗ (i′ (c, sd) , sd) dc
) ∫ ch

c∗
g(c)dφ

∗(i
′
(c,sd),sd)
dsd

dc(∫ ch
c∗
g(c)φ∗ (i′ (c, sd) , sd) dc

)2 .

(24)

We multiply both sides by the denominator of the first two terms, which also

appears squared in the denominator in the second two terms. Then, in terms

three and four, we replace the ratio of the first term in the numerator to the

remaining term in the denominator with G̃(i) based on (23). We can then

reorganize by collecting the similar terms. The first and third terms both involve

the derivative of the lower limit of integration and are evaluated at c′ and

c∗, respectively. The second and fourth terms both involve integrals of the

derivative of φ∗ and can be converted into conditional expectations by factoring

out the mass of c contained within the limits of integration. Thus we have
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∫ ch

c∗
g(c)φ∗ (i′ (c, sd) , sd) dc

dG̃(i)

dsd
=

−
(
dc′ (i, sd)

dsd
g (c′ (i, sd))φ

∗ (i′ (c′ (i, sd) , sd) , sd)

− G̃(i)
dc∗ (sd)

dsd
g (c∗ (sd))φ

∗ (i′ (c∗ (sd) , sd) , sd)

)
+H(c∗)G̃(i)

(∫ ch

c′(i,sd)

g (c)

G̃(i)H(c∗)

dφ∗

dsd
dc−

∫ ch

c∗(sd)

g (c)

H(c∗)

dφ∗

dsd
dc

)
,

(25)

where H(c∗) is the fraction of individuals who commit infractions, i.e. who have

a value of c above c∗.

The terms on the second and third line represent the direct effect of

changes in stop costs on motorist behavior. The term on the second line is

positive and arises because at higher stop costs the c′ associated with any speed

i will be lower and therefore at any c above c∗ motorists will be travelling faster.

The term on the third line is negative creating an ambiguity because the c where

motorists are indifferent between committing an infraction or not c∗ also falls

with stop costs. Therefore, just like in the VOD test, one source of ambiguity

in the distribution of stopped motorists arises because minority motorists who

did not commit infractions during the day may commit infractions at night, and

those motorists who are now at risk of being stopped slow the speed distribution

of stopped motorists. If the distribution of c has a lower limit cl and c∗ < cl,

then all motorists commit infractions, the density at c∗ is zero, and the term on

the third line is zero eliminating this source of ambiguity.

Unlike the VOD test, however, several factors point to the term of the

second line being larger in magnitude than the term on the third line. Given

the construction of G̃(i) for stopped motorists, c′ is greater than or equal to c∗

so that φ∗(i′(c′, sd), sd) is greater in magnitude than φ∗(i′(c∗(sd), sd); and G̃(i),

which multiplies the second expression (on line 3), is less than or equal to 1.

Both of these effects contribute to a positive net value of the first term (the sum
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of the second and third line) in G̃(i) and increase in magnitude with i. If g(c)

is unimodal and c∗ is below the mode of g(c), then g(c′) will be greater than

g(c∗) for small values of i when the first two effects are not large, and for larger

values of i, the first two effects may dominate anyway.

Finally, we need to compare the magnitudes of the derivatives of c′

and c∗ with respect to sd. c∗ is identified by the following equality (zero net

benefits):

b(i′(c∗, sd), c
∗)− φ∗(i′(c∗, sd), sd)t(i′(c∗, sd)) = 0. (26)

Totally differentiating this equation yields a simple expression for the derivative

because the envelope theorem implies that all the terms involving derivatives

of i′ with respect to either c∗ or sd are multiplied by the first order condition,

which is zero, and so

dc∗

dsd
=

∂φ∗

∂sd
t

∂b
∂c

< 0. (27)

We can also define c′ based on

i′(c′(i, sd), sd) = i (28)

Again, we can totally differentiate and use the comparative static results from

Lemma 2 and Assumption 2.13 to get

dc′

dsd
= −

di′

dsd
di′

dc

= −
d
di

(
∂φ∗

∂sd
t
)

d
di

(
∂b
∂c

) < 0. (29)

The derivative of c′ is the ratio of the slopes over infraction level of the same

terms in the expression for the derivative of c∗. At present, we do not have

specific intuition concerning the relative magnitude of the ratio of marginal

stop costs to marginal benefits from c as compared to the ratio of the slopes of

these two terms with respect to infraction severity.

Looking at the last line of (25), the second expression on the right hand

side of the equation represents another second of ambiguity that does not arise

30



for the VOD test. Specifically, the probability of being stopped at any speed

φ∗ is likely to be heterogeneous in the rate of decline of stop probability with

stop costs, and so the cumulative effect of changing stop probability as stop

costs change could have unexpected effects on the speed distribution of stopped

motorists. Again, however, there are reasons to believe that this contribution

to the derivative is also positive. In constructing (25), the density term g(c)

within each integral has been scaled so that it represents a conditional density

within the limits of integration, and so each integral represents a conditional

expectation of the derivative of φ∗ with respect to sd. This derivative is

dφ∗

dsd
= h−1

′
(u(i)− sd)

(
∂u

∂i

di′

dsd
− 1

)
, (30)

which is negative based on Assumption 2.13. If this derivative decreases in

magnitude with c (a positive cross-partial derivative) then the second integral

will be larger and the entire expression will be positive. The cross-partial of φ∗

with respect to sd and c is

d2φ∗

dcdsd
= h−1

′′ ∂u

∂i

di′

dc

(
∂u

∂i

di′

dsd
− 1

)
+ h−1

′
(
∂2u

∂i2
di′

dc

di′

dsd
+
∂u

∂i

d2i′

dcdsd

)
. (31)

The second of the two expressions involves the sum of two terms multiplied by

h−1
′
. The first of those two terms is positive, and it can be shown using the

comparative static derivation of di′/dsd, which is positive, that the second term

is positive as well if

Assumption 2.15. ∂
∂c

∂2b
∂i2 < 0.

Specifically, the numerator of the comparative static expression from

Lemma 2 only involves t and φ∗, and the only term in the denominator (the

second order condition) that depends upon c is the second derivative of b with

respect to i, which is signed by Assumption 2.7. The assumption on the cross-

partial of b is relatively intuitive (unlike most third derivatives of preferences).

Preferences for infraction level increase the positive marginal benefit of infrac-

tion level (Assumption 2.8), and Assumption 2.15 implies that preferences for
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the level of infraction also increase the negative slope of the marginal benefit.

Therefore, when measured as a share of marginal benefit, the magnitude of the

change in the marginal benefit with c can increase or decrease, but the change

in the marginal benefit cannot increase in absolute terms under assumption

2.15 - a larger first derivative in infraction level (marginal benefit) will require

a larger negative second derivative with respect to infraction level in order to

reduce the marginal benefits sufficiently as infraction level rises. Note that this

assumption is satisfied automatically based on maintained assumptions when b

is multiplicative in functions of b1(i) and b2(c), so that b(i, c) = b1(i)b2(c), and

∂

∂c

∂2b

∂i2
=
∂b2
∂c

∂2b1
∂i2

< 0 (32)

since Assumption 2.8 requires the derivative of b2 to be positive and Assumption

2.7 requires the second derivative of b1 to be negative. With the second term

positive under this assumption and general restrictions on the magnitude of the

second derivative of h−1, which pre-multiplies the first term in (31), relative

to the first derivative of h−1 in order to assure a well behaved equilibrium, we

expect the entire second term of (25) to be positive over much of the relevant

parameter space.

In the next section, we will use calibrated simulation models to pro-

vide an indication of the circumstances under which this derivative is positive

under the alternative hypothesis of discrimination against African-Americans,

especially relative to circumstances when the VOD statistic lies above or below

1 under the alternative hypothesis.

3 Simulation

Simulating the theoretical model allows for two key results. First, we are able to

verify that there are parameter values that both match our stop and speeding

data for which KERS does not have the traditionally expected magnitude under

the alternative hypothesis of discrimination, but the speed distribution does
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shift unambiguously in the expected direction. Second, it allows us to test the

flexibility of those circumstances.

To simulate the theoretical equilibrium, we use the following functional

forms:

u(i) = iη + u0 η > 1, u0 > sv,w

h−1(h) = ha

ha+k a > 2, k > 0

b(i, c) = b0i
α1eα2c b0 > 0, 0 < α1 < 1, α2 > 0

τ(i) = iµ + τ0 µ > 1, τ0 > 0

sv,w ≥ sv ≥ sv,m
c ∼ skew normal(ω), ω > 0

These forms satisfy most of the assumptions in the model, while retaining the

necessary ambiguity, notably in h−1. Specifically, the form of h−1 assures that

the distribution of costs associated with circumstances, h(φ), follows a unimodal

distribution over R+. We relax these assumptions in two specific ways for

convenience. First, b does not limit to a finite value with i, but does increase

more slowly with i than τ for large values of i. Second, we select skew normal

as the distribution of c, which has non-zero density over R. However, even after

relaxing Assumption 20, we regularly find scenarios where KERS is less than 1.

Table 1 describes the 18 parameters necessary to specify in our simulated model,

delineated by whether we fix the parameter or calibrate it using moments from

the data described in the following section.

[Insert Table 1]

Unfortunately, the data do not allow us only to recover identifying in-

formation on both motorist and officer utility simultaneously because we have no

information on outcomes that are shaped separately by either officer or motorist

behavior. Thus, we choose nine parameters related to motorist behavior to cal-

ibrate, and as a robustness check change the officer parameters and recalibrate

motorist parameters. We calibrate these parameter values using 24 empirical
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moments, six speed percentiles (20th, 40th, 60th, 80th, 90th, and 95th) for each

combination of daylight/darkness and minority/non-minority, and one fixed mo-

ment, the fraction of whites not infracting. The latter is unknown given data

limitations, and central to the problem because a high fraction of motorists not

infracting implies a greater density of motorists who are indifferent between

infracting and not given our unimodal distribution of c. Therefore, we chose

10% as a reasonably conservative upper-bound, and then systematically lower

the fraction while evaluating the VOD test statistic and the shifts in the speed

distribution. The initial police officer parameters are selected via a manual cal-

ibration process in order to achieve a stable equilibrium, and then we calibrate

the motorist problem holding those parameter fixed. Table 2 breaks down the

fixed and calibrated parameter values for each run of the simulation. In total,

we calibrate to 7 combinations of fixed parameters and fraction of whites not

infraction. The first 3 columns in table 2 show these values for three levels of

whites not infracting, 10%, 5%, and 2%. As discussed below, we then fix the

fraction of whites not infracting at 5% and vary two fixed parameters: the shape

parameter for the distribution of circumstances, a; and the rate of increase in

officer pay-off, η. These parameter values are in columns 4 and 5, and 6 and 7,

respectively, in table 2. Calibrations are conducted by selecting 1000 draws on

(0, 1) and then mapping those draws into c for both a population of white and

minority motorists using the inverse of the CDF for the distributions of c for

each race.

[Insert Table 2]

Figure 1 shows plots of motorist benefits and costs with a vertical line

designating the optimal level of positive infractions. The figure starts with the

preference parameters of 3, 2.5 and 2 standard deviations below the mean along

the top row from left to right, 1 standard deviation below, zero and one standard

deviation above on the middle row, and finally 2, 2.5 and 3 standard deviations

above the mean on the bottom row. The plots show a clear progression of

the optimal level of infraction (speed above the speed limit) across varying
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levels of the preference parameter or criminality. Further, for levels of 2 or

more standard deviations below the mean, the cost curve always lies above the

benefits curve and motorists choose not to commit an infraction. While starting

near 1 standard deviation below, motorists switch to infracting at their optimal

positive level.

[Insert Figure 1]

For a given set of parameter values, we simulate driving behavior using

equivalent draws for both the white and minority populations. Again, we draw

the same set of random numbers of (0, 1) for white and minority motorists,

which are then mapped into values of c for each population, but in order to

assure precision in the reported values these calculations are conducted using

25,000 draws. Figure 2 illustrates this population behavior through a repre-

sentative speed distribution for whites. Using equivalent draws for white and

minority motorists implies that we do not directly recover the share of motorists

who are minority. Rather, we indirectly recover this information by comparing

the fraction of minority motorists stopped in the simulation (FSIM ) to the em-

pirical analog (FDATA) and calculating the fraction minority motorists in the

population necessary to assure that the implied fraction of stopped motorists

who are minority equals FDATA. Noting that the simulated population is ex-

actly 50% minority, the implicit simulated share of minority motorists is simply

0.5 times the fraction of motorists who are minority δT , where we find δT by

solving FDATA = δTFSIM for T = Day and Night. We present these results

along side KERS calculations for context.

[Insert Figure 2]

Table 3 presents the simulated speed distribution moments and the

actual moments on which the calibration is based. The speed distribution is

illustrated by showing the speed at which stopped motorists are driving at the

20th, 40th, 60th, 80th, 90th and 95th percentiles of the speed distribution. The

columns are presented in pairs with the first column in each pair containing the

35



speed at each percentile from the simulation and the second column presenting

the speed moments on which the calibration is based. The first four columns

present the speed distribution for minority motorists in daylight and darkness,

and the second four columns present the distribution for white motorists. The

simulation matches the speed moments from the data quite well almost always

being within 1 mile per hour and often being within 1/2 mile per hour.

[Insert Table 3]

Table 4 presents the simulated shift of the speed distribution for both

stopped white and minority motorists. The speed distribution of minority

(white) motorists is clearly shifted to the right (left) in darkness, consistent

with higher (lower) stop costs for minorities (whites) when visibility is limited.

The unambiguous shift in the distribution of stopped motorists suggests that for

our model and calibrated parameter values our proposed test for the direction of

discrimination can accurately capture whether minorities believe that they are

being discriminated against. As discussed above, if we reject the null of equal

treatment and the magnitude of the VOD test is not informative, we argue that

motorists responses to their beliefs of how they are being treated is a reasonable

standard for determining the actual direction of unequal treatment. Notably,

using equation (14), we also find a KERS of 0.95; well below the threshold of

1, a value that in the past might have been interpreted as reverse discrimina-

tion. This value of KERS arises in spite of the fact that in our model police

have lower stop thresholds for African-Americans resulting in a clear distribu-

tional shift in speeds when police can no longer identify race. For the purpose

of comparison, the similar statistic for Grogger and Ridgeway (2006) is 0.80,

and for our data in Massachusetts the statistic is 1.12.6 The table also presents

6See below for a description of the data. In order to be consistent with our preferred
logit models that control for day or week and time of day, we use the inter-twilight sample
to estimate a model of whether a stop is during daylight as a function of these controls, and
predict the probability of stop for each observation. Daylight stop probabilities are based on
unweighted averages from the inter-twilight sample, and darkness stop probabilities are based
on weighted averages using the predictive probability divided by one minus the predicted
probability of daylight as weights in order to assure that our VOD statistic is calculate holding
the covariates fixed on average across the daylight and the weighted darkness motorist samples.
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in the last two rows the predicted fraction of motorists who are minority for

our sample, and the model predicts a larger fraction of minority motorists in

daylight relative to darkness. For comparison, we calculate the average share

of African-Americans as a fraction of the total number of whites and African-

Americans averaged across all towns and state police barracks in our sample

weighted by the number of stops during our inter-twilight window. The average

share African-American for our town subsample is 22.3 percent, but the share

of African-Americans as a fraction of whites in the state (potentially relevant

for the state police stops) is much smaller at 6.8 percent.

[Insert Table 4]

Table 5 presents the speed distribution shift from daylight to dark-

ness for all minority motorists and just those minorities who were stopped, for

parameters calibrated to 10% of white motorists not infracting. The first and

second columns replicate the information from Table 4, and columns 3 and 4

present the shift in the speed distribution for all motorists. These distribu-

tions are closely related because the distribution of stopped motorists is created

by using all motorists weighted by the probability of being stopped at each

speed. As expected, the speed distribution for all motorists are shifted in the

same direction as stopped motorists, but the magnitude of the shifts in the

speed distribution for stopped motorists is substantially muted relative to all

motorists. Referring back to equation (25), the observed reduction in the speed

distribution shift is consistent with the third line of the equation contributing

to a slower speed distribution because relatively risk averse motorists who did

not infract in daylight commit infractions in darkness. Regardless, unlike the

VOD test statistic, we do not observe any evidence of reversals where the speed

distribution shift for stopped motorists moves in the opposite direction of the

distribution shift for all motorists.

[Insert Table 5]

Next, we examine the impact of reducing the fraction of whites who
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choose to not commit an infraction. In doing so, we move towards a situation

where the magnitude of the VOD test statistic might provide information on the

direction of discrimination because the density of motorists who are indifferent

between infracting and not is much lower. We conduct three new calibrations

with the fraction of white not infracting set to 5, 2 and 1 percent. While the

KERS test statistic moves upwards as we lower the fraction not infracting, the

statistic remains below 1 for all three simulations. The reason that the statistic

never rises above 1 is because even when the fraction white not infracting is

very small in daylight, discrimination under the alternative hypothesis causes a

substantially larger fraction of African-Americans not to infract. These African-

Americans can then choose to infract in darkness when police do not observe

race. Notably, the speed distribution shifts for stopped motorists also gets larger

and more closely resembles the shift for all motorists as the fraction of motorists

not infracting shrinks and the density of motorists who are indifferent between

committing an infraction or not during the daylight decreases. As a result, in

our simulations, tests for speed distribution shifts of stopped motorists appear

to have substantial power to detect shifts in the population speed distribution

under circumstances involving discrimination against minorities and where the

VOD test statistics would never exceed 1.

[Insert Table 6]

In order to assess the robustness of our findings, we modify our pa-

rameters from the officer’s problem and recalibrate our model. First, we modify

a, which determines the curvature of h−1. The parameter must be greater than

2, and in our initial simulations the parameter is set to 2.1. In table 7, we set a

to 2.05 and 2.25. Next, we modify η, which must exceed 1 and is set to 1.01 in

our simulations. We now set η to 1.03 and 1.09 and recalibrate. As we can see

in Table 7, our test is fairly robust to changes in both fixed parameter values

with the VOD test statistic always comfortably below 1, and the speed dis-

tribution shifts for stopped motorists consistently in the right direction except

at the highest percentiles where matching the skewness of the empirical speed
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distribution can be somewhat challenging.

[Insert Table 7]

4 Empirical Analysis

In this section, we examine Massachusetts traffic stop data applying the impli-

cations of our theoretical model. We begin by summarizing the overall traffic

stop data and describing our construction of the analytical sample. Next, we

examine the analytical sample for evidence of discrimination using the VOD

approach. As established in our theoretical model, the coefficient estimate from

VOD is sufficient to identify unequal treatment, but uninformative about the

direction of discrimination. Thus, we apply our alternative estimation strategy

that examines shifts in the speed distribution. Making use of the richness of

our data, we examine racial differences in the speed distributions of stopped

motorists between daylight and darkness using a quantile regression, and we

also conduct a series of tests for distributional changes across additional mo-

torist demographics and vehicle characteristics. Our findings provide strong

evidence that white and African-American motorists were treated differently by

Massachusetts police officers, and that African-American motorists, especially

young male motorists, believed that they faced discrimination in traffic stops.

4.1 Descriptive Statistics

Our empirical analysis utilizes two distinct analytical samples and associated

visibility treatments, which we describe in this section. Following Grogger and

Ridgeway (2006), we focus on traffic stops made during an inter-twilight window

when solar visibility varies from seasonal changes and the Daylight Savings

Time (DST) change. Distinct from previous analyses, we focus explicitly on

speeding stops so that we have a measure of infraction severity, e.g. relative or

absolute speed above the speed limit. As noted by previous authors using the

VOD approach, violations such as headlight outages or seatbelt violations could
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potentially be correlated with motorist race and visibility. Thus, our focus on

moving violations has the added advantage of insulating the analytical sample

from such confounding factors.

For our first sample, we wish to compare stops made at the same time

of day and day of week where some of those stops occurred during daylight

and some occurred in darkness. Therefore, we select only traffic stops made

between the earliest recorded sunset and latest end to civil twilight in the state,

i.e. the so-called the inter-twilight window. We select the inter-twilight window

because times outside of those ranges are either always in daylight or always in

darkness. We utilize data from the United States Naval Observatory to identify

this window and to eliminate traffic stops that we cannot categorize as daylight

or darkness, e.g. stops that occurred during the actual civil twilight period as

defined by the Naval Observatory. Specifically, the inter-twilight window began

at the earliest easternmost sunset occurring in Orleans, MA at 4:09 PM and the

latest westernmost end to civil twilight occurring in Mount Washington, MA

at 9:08 PM. Next, using the date of the traffic stop and the Navel Observatory

data, we eliminate periods within the inter-twilight window that are neither ex-

clusively dark or exclusively daylight within the state. Specifically, we eliminate

stops that occur during civil twilight for that day in the state of Massachusetts.

For example, on the spring equinox of 2002 (March 20th) we categorize stops

as daylight if they occurred between the start of the inter-twilight period and

the easternmost sunset on that day at 5:52 PM disregarding stops that occur

after that time, but before the westernmost end to civil twilight at 6:34 PM, at

which point the darkness period of the sample begins for that day.7

The Massachusetts data contained a total of 1,048,575 stops spanning

from April 2001 to January 2003 of which 200,576 were made for speeding. We

restrict our analytical sample to State Police, Boston, and municipal depart-

7The Massachusetts traffic stop data only contained the hour of the day that the stop
was made and had no information related to the minute. As a result, only traffic stops that
occurred during the inter-twilight window in an hour of complete daylight or darkness were
included. Although this additional restriction reduced the overall sample size, we do not
consider it a threat to the validity of the results.
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ments with at least 100 speeding stops and with 10 percent African-American

residents according to the 2010 Census.8 These restrictions, along with limiting

our sample to only stops made of African-American and white motorists, left

us with 80,001 speeding stops and ensured that we had a sufficient number of

observations by town to include location fixed-effects in each of our estimates.

As mentioned, we focus on the 21,461 speeding stops made during the inter-

twilight window for which we can clearly identify the stop as being in either

complete darkness or daylight.

Table 8 presents descriptive statistics from our annual analytical sam-

ple that relate directly to controls that we include in our estimation procedure

and robustness checks. The traffic stops are concentrated more heavily during

the work week and during the early portion of the evening commute. African-

American motorists made up 17.6 percent of the sample while 73.9 percent of the

analytical sample was male and 54.5 percent were 30 years old or less. A total

of 16.2 percent of the motorists from the analytical sample were stopped driv-

ing a red automobile while nearly half were in a vehicle less than 11 years old.

The demographics found in our analytical sample, i.e. speeding stops within

the inter-twilight window, are reasonably consistent with the overall traffic stop

data.

[Insert Table 8]

For our second sample and analysis, we further restrict our analytical

sample to traffic stops occurring within 45 days of the three DST shifts in the

data. We restrict our sample to stops made during and after the evening com-

mute, at 4:00 PM or later and prior to 10:00 PM. This restriction is designed to

capture the entire evening inter-twilight window, which typically falls between

5:00 and 9:00 PM during these 90 day periods around the DST shifts. For this

sample, our treatment variable is simply after the spring DST shift or before

the fall DST shift, which represents a treatment of more daylight during and

8The municipal departments included in the analytical sample were Brocton, Everett,
Lynn, Milton, Randolph, Springfield, and Worcester. Separate barracks fixed-effects were
included for State Police.
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after the evening commute.9 This treatment exploits two sources of variation:

the 1 hour time delay in sunset in the spring or 1 hour earlier sunset in the fall

with the DST shift, and the relatively rapid seasonal change in sunset timing

that occurs during spring and fall - a change of almost 2 hours during the 90

day period. For example, the earliest easternmost sunset (westernmost end to

twilight) across the 90 day DST window of spring 2002 changed from 5:21PM

(6:02PM) to 8:00PM (8:47PM) including the 1 hour DST shift. As noted above,

by focusing on this period of rapid change in the timing of sunset, we avoid con-

founding changes in daylight with well documented, broad seasonal changes in

travel patterns between summer and winter.10 Table 9 presents the descriptive

statistics from this more restrictive subsample of 7,210 traffic stops. The volume

of stops across time of day and day of the week closely mirror those observed

in the overall analytical sample. The demographic and vehicular characteristics

in this more restrictive subsample are also comparable to the annual data.

[Insert Table 9]

4.2 Primary Estimates

In this section we examine the analytical sample for evidence of discrimination.

We begin by estimating the traditional VOD test using a logistic regression and

find evidence suggesting the presence of unequal treatment or discrimination.

The VOD test, i.e. the odds of a stopped motorists of demography d in daylight

v relative to darkness v, is written such that:

log

(
P (d|v, t, dow, sv, b)

1− P (d|v, t, dow, sv, b)

)
= β0 + β1v + βT2 t+ βT3 dow + β4sv + βT5 b (33)

9Unlike in the annual sample, we include all stops in our sample regardless of whether it
is twilight or the hour of the day is completely in darkness or daylight.

10In principle, we could estimate a regression discontinuity analysis controlling for the calen-
dar day as a running variable and only obtaining identification using the variation associated
with the 1 hour DST shift. However, we have insufficient power to conduct such an analysis.
The coefficients on both the running variable and the DST shift variable are both sizable and
consistent with a higher likelihood of stopped motorists being African-American in daylight,
but individually both of these sources of variation lead to statistically insignificant estimates.
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In Equation 4.2, we model the relative odds ratio as a function of v

denoting visibility, t for time of day, dow for day of the week, sv for overall traffic

stop volume, and b for heterogeneous barracks/town effects. We estimate a

weighted regression using maximum quasi-likelihood estimation where the error

term takes a logistic distribution (see McCullagh and Nelder 1989).11 Visibility

is our variable of interest and is captured by a dummy variable for either daylight

for our full sample or the period with more daylight in our restricted sample

i.e. before (after) the fall (spring) DST shift. Time of day and day of week

effects are captured using a series of binary variables. These fixed effects assure

that the effect of daylight is identified by comparing stops for periods with

comparable levels and composition of traffic activity. Similarly, we include a

series of barrack/town fixed-effects for each of the eight municipal departments

(including Boston) as well as for individual State Police troops. In an effort

to better capture idiosyncratic fluctuations in driving patterns, we also include

a continuous variable constructed by standardizing the overall (out of sample)

daily inter-twilight traffic stop volume across the state. Note that relative to

the sample described in Table 8 we drop 21 observations where gender was not

recorded and restrict the sample by an additional 654 stops by only including

motorists between 18 and 65 years of age.12

Most stops occur in daylight, and our sample varies considerably across

towns and state police barracks in terms of the share of stops occurring in dark-

ness. Towns or barracks with very few stops in darkness will provide, at best,

very noisy estimates of changes in the minority share of stops between day-

light and darkness. Therefore, our estimates include weights that are calculated

in order to given each town a relative weight equal to the reciprocal of the

variance of the individual town/barracks specific estimate of racial difference.

Specifically, we estimating Equation 4.2 as a logistic regression and replace the

overall visibility indicator with a full set of interactions between visibility and

the barracks/town fixed-effects. Using the standard error on the estimates of

11We follow Grogger and Ridgeway (2006) by using reverse regression so that any measure-
ment error, in terms of motorist race, is absorbed by the error term.

12These sample restrictions did not substantively impact the estimates
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visibility for each barrack/town σβ1,b
, we calculate a weight for each stop in each

barrack/town as:

wi,b =
(
Nb(i) ∗ σ2

β1,b(i)

)−1
/

∑
j

(
Nb(j) ∗ σ2

β1,b(j)

)−1
where Nb is the number of stops i in any barracks or town. Similar to GLS,

these weights are based on the inverse of the variance placing higher weights on

locations that provide the most precise estimates of racial differences (regardless

of the magnitude of the racial differences in these locations). 13

Table 10 presents coefficient estimates from applying our estimation

equation to both the main analytical sample and to the alternative subsample

where we restrict traffic stops to those occurring within 45 days of the DST shift

(the 90 day DST sample). Across the estimates, we sequentially introduce an

increasingly comprehensive set of control variables. The leftmost panel contains

estimates using the full annual inter-twilight sample where the majority of the

variation comes from broad seasonal changes in the length of daylight. The

coefficient estimates indicate that there is a statistically significant 0.35 to 0.48

increase in the log-odds of a stopped motorist being of minority descent during

daylight. We obtain similar estimates ranging from a 0.35 to 0.37 log-odds

increase using the more restrictive sample of stops where we only include stops

within 45 days of the three DST shifts occurring in the data. We consistently

reject the null hypothesis of equal treatment across all models and samples.

While our basic findings are robust across model specifications, the very stable

magnitude of the estimates for the DST window sample suggest that there is

little correlation between the treatment and motorist or automobile observables,

implying a balanced sample across traffic stop volume and towns/barracks.14

[Insert Table 10]

13Reweighting has only modest effects on the point estimates for the visibility indicators.
14Although Smith (2016) reports evidence that motor vehicle crashes increase near the

spring DST shift, we expect sleep impairment to be concentrated during the morning commute
(i.e. out of our sample) and to have homogeneous effects across demographic groups.
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Our theoretical model has shown that, in the presence of discrimi-

nation, the share of minority motorists stopped may increase or decrease in

darkness so that the VOD test statistic presented in the theory section may

lie above or below 1 under the alternative hypothesis of discrimination against

African-Americans. Equivalently, the regression coefficient on visibility in this

context may take on either positive or negative values leaving us unable to iden-

tify the direction of the discrimination.15 Therefore, we next directly examine

the speed distribution of stopped motorists using unconditional quantile regres-

sion. In all of the proceeding estimates, we focus on absolute speed over the

speed limit but Appendix 2 contains parallel estimates using relative speed.

We estimate an unconditional quantile regression following Firpo, Fortin,

and Lemieux (2009) using a software package described by Borgen (2016). Put

simply, our estimation follows a three step procedure where we (1) construct

a transformed speed variable using kernel density estimation, (2) define the

re-centered influence function (RIF) variable for each quantile in the trans-

formed speed distribution, and (3) use RIF as the outcome variable in a linear

model, so-called RIF-OLS or unconditional quantile regression (Firpo, Fortin,

and Lemieux 2009). As with our estimates of the VOD test statistic, we apply

the weight wi,b that allows us to obtain a composite estimate for our sample

providing more weight to the subsamples of stops from towns or barracks that

provide the most information for identifying racial differences.

Our sample of observations where we observe miles per hour over the

speed limit of stopped motorists (spdi) is reduced by 902 stops because of unre-

ported speed limits in some of the data.16 Using this sample, we create a kernel

density by smoothing spdi so that we can observe an estimated density for any

discrete point in the speed distribution:

15As discussed above, we verify for our data and using the information in Grogger and
Ridgeway that our test statistic yields results consistent with the reverse regression methodol-
ogy typically used in VOD tests. We obtain a VOD test statistic greater than 1, and positive
estimates on daylight, while Grogger and Ridgeway obtain negative estimates on daylight and
the estimate of the VOD test statistic using the figures from their paper is 0.80.

16The Boston Globe, the original data steward, eliminated information on speed traveled
when the information in the record raised concerns about data quality including speeds greater
than 200 mph and speed zones greater than 65 mph or less than 15 mph.
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f̂K (spdi) =
1(∑

j

√
wj,b

)h n∑
j=1

√
wj,bK

(
spdi − spdj

h

)
(34)

The bandwidth parameter h is selected using a standard optimal bandwidth

function where h = 9m
10 /n

1
5 with m = min

(√
var (spd),

interquartile rangespd
1.349

)
.

The kernel function K is robust to a variety of alternate functional forms but

is specified as Epanechnikov in our estimates. We obtain a smoothed speed

and density at each numeric τ decile of the distribution since we now have a

continuous representation of the distribution.

Next, we calculate the RIF for each decile τ in the kernel smoothed

speeding data within the inter-twilight sample as follows:

RIF
(
spdi : qτ , Fŝpd

)
= qτ +

τ − I {spdi ≤ qτ}
fspd (qτ )

(35)

where qτ and fspd are the estimated speed and density at decile τ based on

the kernel smoothing estimate of the speed distribution, and I is an indicator

function.

Using the decile RIF’s for each i observation, we estimate changes in

the speeding distribution by estimating linear models for the RIF at each decile

τ using the following model specification:

RIFτ,i = βτ,0 + βτ,1di + βτ,2vi + βτ,3 (di ∗ vi) + βTτ,3ti + βTτ,4dowi+

βτ,5svi + βτ,6li + βTτ,7bi + ετ,i

(36)

where the variable di is a dichotomous indicator variable equal to unity when the

motorist was of African-American descent, and vi is a binary variable indicating

the presence of the daylight during the traffic stop. As with the VOD estimates,

our parameter of interest βτ,3 is the coefficient on the interaction of these two

variables, which captures racial heterogeneity in speed distribution shifts. As
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with equation Equation 4.2, we include controls for ti time of day, dowi day of

week, svi daily traffic volume, and bi barracks/town fixed-effects. In addition,

we add fixed effects associated with 5 mile per hour speed limit bins.17 Table

11 presents the results from applying equation 36 to the annual inter-twilight

(panel 1) and 90 day DST sample (panel 2) of Massachusetts traffic stops for

each decile of the absolute speed distribution.18

[Insert Table 11]

As shown in Table 11, we find strong evidence in the annual inter-

twilight sample that minority motorists shift to slower speeds during daylight

hours. Although we find negative coefficient estimates on the interaction be-

tween demography and visibility across the entire distribution, only those above

the 30th percentile were found to be statistically significant in the annual sam-

ple. Similarly, we find statistically significant negative shifts between the 30th

and the 50th percentiles of the speed distribution for the more restrictive 45

days DST sample. Several of the estimates are significant at the 1 Percent level

and this pattern is unlikely to have arisen due to type 1 error. In both samples,

white motorists are not observed to adjust their behavior in response to visi-

bility. Although our theoretical model does predict that white motorists shift

towards faster speeds during daylight, we believe that this shift will be small

and difficult to detect due to the fact that white motorists constitute nearly 82

percent of the overall population of traffic stops. Therefore, on average, police

stop costs in darkness may be relatively close to police stop costs during day-

light. Estimates using the relative speed distribution align with Table 11 and are

presented in Table A.1 of the Appendix. Figure 3 plots a graphical depiction of

the effect of daylight on the African-American and white speed distributions by

17Most speed limits are in multiples of 5 mph so we divide the bins at the one’s digits of 7
and 2 so that the bins are relatively evenly spaced around the multiples of 5. Speed limits of
5 or 10 mph do not occur in Massachusetts and stops for 15 mph speed limits are placed in a
bin that is 17 mph or lower, followed by a bin that is 17 mph to 22 mph. Similarly, 60 mph is
a relatively rare speed limit so it is pooled with 65 mph in a top bin that is formally defined
as 57 mph or higher

18As noted, estimates using relative speed as the dependent variable are contained in Ap-
pendix 2.
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applying kernel density estimation to the more restrictive 90 day DST window.

[Insert Figure 3]

It seems plausible that specific subgroups of African-American mo-

torists may face more discrimination than others. In particular, we postulate

that the results from Table 11 and Figure 3 could be driven predominantly by

discrimination against young African-American males. In an effort to investi-

gate this hypothesis further, we apply our quantile regression model to the data

but condition on age and gender subgroups where we define young as 30 years of

age or less. Table 12 presents the results of this exposure analysis where we find

strong evidence confirming our hypothesis that young African-American males

are driving the results from Table 11. We provide estimates for relative speed in

Table A.2 of the Appendix. Using both absolute and relative speed in the annual

and 90 day DST samples, we find strong evidence that the downward shift of the

speed distribution in daylight is largest and most significant for young African-

American males. We also find consistent evidence of slower speeds for young

African-American females in daylight. For older African-American males and

females, the negative shift in the distribution in daylight only arises consistently

for the annual sample that relies heavily on seasonal variation.

[Insert Table 12]

Our analysis of the speed distribution of stopped motorists, coupled

with our finding of a non-zero coefficient estimate from the VOD test, sug-

gests that Massachusetts police disproportionately stopped African-American

motorists from 2001 to 2003. Specifically, the evidence supports the conclusion

that police officers in Massachusetts treat white and African-American motorists

differently, and that African-American motorists believe that they were racially

profiled by those police officers, particularly young African-American males.

Of course, a natural concern is that individuals may have changed their

driving behavior in darkness for reasons other than racial profiling, and motorist

race is only one factor on which motorist differ in how they respond to changes

48



in visibility. In the next section, we address this concern by examining whether

motorists differ by motorist or vehicle attributes in terms of how they change

their driving behavior in daylight.

4.3 Falsification Tests

The first thing to notice is that the coefficient on daylight in Table 11 is typically

small and statistically insignificant, and the only sizable coefficient estimates

(sixth decile in the annual sample and the sixth to tenth decile in the 90 day

DST sample) are positive. Therefore, we find no evidence that white motorists

drive slower in daylight (due to glare or heavier traffic volume for example) as

is observed for African-American motorists. Next, we utilize the subsample of

white motorists to examine whether we observe differential shifts in the speeding

distribution across other motorist demographic or vehicle characteristics. As

above, we estimate quantile regression models of absolute and relative speed

using both the annual and 90 day DST samples and relative speed estimates are

presented in Tables A.1 through A.6 of the Appendix. We examine the speed

distribution for old and new vehicles in Table 13 and corresponding Table A.3

of the Appendix. We define new vehicles as those aged 10 years or less but

our estimates are robust to alternative delineations. There is little evidence

suggesting that the speed distribution differentially shifts in response to visibility

across this particular vehicle characteristic. Out of 18 interaction coefficients

only 1 is significant at the 5 percent level and 2 are significant at the 10 percent

level.

[Insert Table 13]

Next, we examine the speed distribution for white motorists condi-

tional on vehicle color. Specifically, Table 14 disaggregates white motorists re-

ported as driving a red vehicle from those in all other color automobiles. Testing

the classic notion that police target red vehicles when making traffic stops, we

do not find any observable preference for stopping these automobiles. None of
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the estimates are statistically significant. The estimates using the relative speed

distribution align with those below and are shown in Table A.4 of the Appendix.

[Insert Table 14]

In Table 15 and corresponding Table A.5 of the Appendix, we present

the speed distribution for traffic stops made of white motorists by age. In

particular, we examine the impact of visibility on the speed distribution for

motorists 30 years of age or less versus older motorists. As above, there is very

little evidence in support of a shift in the speed distribution of white motorists

by age; only one rejection at the 10 percent level out of 18 tests.

[Insert Table 15]

In Table 16 and corresponding Table A.6 of the Appendix, we present

the speed distribution for traffic stops made of white motorists by gender.

Specifically, we examine the effect of visibility on the speed distribution for

both male and female motorists. For the gender subsample estimates, we do

observe a substantially larger number of rejections of the null hypothesis of no

differences across the deciles, but we do not observe any consistent pattern with

season variation associated with males driving slower during daylight and the

variation during the DST window consistent with males driving faster in day-

light. As discussed in detail in the exposure analysis from Section 4.2, we found

strong evidence that age and to some extent gender have a strong impact on

the speed distribution of African-American motorists. In examining the speed

distribution of white motorists, however, we are unable to detect any consistent

effect across these same demographic dimensions. Moreover, the 90 day DST

window estimates are preferred in that they are insulated against bias from

seasonality shifts in driving behavior, and for that sample young, white mo-

torists drive faster in daylight, rather than slower like young African-American

motorists.

[Insert Table 16]
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In contrasting the subgroup analysis conducted in Section 4.2 with the

falsification tests conducted in this section, it seems clear that white motorist

driving speed is relatively unaffected by visibility, suggesting that slower driving

in response to daylight is a phenomenon concentrated primarily among African-

American motorists. In both the annual and 90 day DST samples, we found very

little evidence that observable attributes influenced the distribution of speed. As

noted throughout the text, these estimates were consistent using both absolute

and relative speed above the requisite speed limit. These results are supportive

of using shifts in the speed distribution of minority motorists for identifying the

direction of discrimination.

5 Conclusion

In this paper, we develop a model of police and motorist behavior concern-

ing speeding and speeding stops. Using this model, we examine the behavior

of minority motorists in darkness when race cannot be observed under the al-

ternative hypothesis of discrimination against minority motorists for speeding

stops in daylight. Not surprisingly, our model predicts that the speed distribu-

tion of minority motorists is shifted to slower speeds during daylight relative to

darkness. Using our model, we consider the recently developed “Veil of Dark-

ness” approach to testing for racial profiling, which uses racial differences in

stops in darkness as a benchmark to assess whether discrimination exists in

police stops made in daylight. Our model implies that the VOD test for dif-

ferential treatment of white and minority motorists is still consistent under the

null hypothesis, but when the null of equal treatment is rejected, the value of

the test statistic is not informative as to whether a given group is being favored

or disfavored in police stop decisions. While the speed distribution is affected

by the same source of ambiguity as the VOD test, our model and simulations

suggest that tests based on shifts in the distribution of the driving speeds of

stopped motorists are likely to be much more powerful for identifying evidence

of disparate treatment against minority motorists, at least from the perspective
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of the motorists themselves.

We apply the VOD test to data from Massachusetts and consistently

reject the null of equal treatment using a variety of models. We then examine

the speed distribution and again find statistically significant evidence of slower

speeds in daylight by minority motorists. These findings are consistent with

racial discrimination in speeding stops against minority motorists. Further, we

assess daylight/darkness differences in the speed distribution along a number of

other dimensions including age and gender, and we do not find consistent evi-

dence of a shift in the speed distribution for any subgroups other than minority

motorists.

These findings call into question reliance on solely VOD tests for identi-

fying racial differences in the rate of police stops. Such tests, which have become

ubiquitous in recent years, can only identify differential treatment. Unless we

are willing to rely on information revealed by motorist behavior, as done in

this paper, it is impossible to identify whether police are discriminating against

minority motorists with tests of this type. As such, our results points to the

need for the development of additional methods for calculating counterfactuals

for the purpose of assessing the racial distribution of police stops, especially

methods that are not sensitive to the behavioral adjustments of motorists.
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Figure 1: Equilibrium for Select Levels of Criminality

Note: The horizontal axis is level of infraction (i.e. ’speed above the speed
limit’). The solid line, dashed line, and dotted line are motorist benefit,

motorist cost, and optimal solution, respectively.
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Figure 2: Density of Infracting White Motorists
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Table 1: Simulation Parameter Names and Symbols

Parameter Name Symbol

Fixed
Mean of white infraction preference distribution mw

Std. Dev. of white infraction preference distribution σw
Initial level of officer pay-off u0
Shape parameter for distribution of circumstances a
Shift parameter for distribution of circumstances k
Rate of increase in officer pay-off η
Stop cost for minorities in light sv,m
Motorist payoff level parameter b0

Calibrated
Skewness of white infraction preference distribution skeww
Mean of minority infraction preference distribution mm

Std. Dev. of minority infraction preference distribution σm
Skewness of minority infraction preference distribution skewm
Rate of increase with infraction in motorist payoff α1

Rate of increase with preferences in motorist payoff α2

Initial level of infraction costs if stopped τ0
Rate of increase in infraction costs if stopped µ
Stop cost for whites in light sv,w
Stop cost in darkness sv
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Table 2: Fixed and Calibrated Parameters Values
for each Simulation Run

10% 5% 2% 5% 5%

Fixed

mw 0 0 0
σw 1 1 1
k 700 700 700
u0 8.39 8.39 8.39
sv,m 1 1 1
a 2.1 2.05 2.25 2.1
η 1.01 1.01 1.03 1.09

Calibrated

mm 0.0012 0.0012 0.0012 0.0008 0.0013 0.0012 0.0013
σm 0.8969 0.8940 0.9018 0.9018 0.8921 0.8916 0.8886
skewm -0.0006 -0.0006 -0.0006 -0.0005 -0.0006 -0.0006 -0.0007
skeww 0.0049 0.0049 0.0048 0.0064 0.0047 0.0050 0.0051
α1 0.5006 0.5006 0.5006 0.5004 0.5006 0.5006 0.5006
α2 0.8542 0.8489 0.8460 0.8032 0.8342 0.8459 0.8446
τ0 93.799 73.796 62.4401 62.557 35.578 73.092 44.678
µ 2.2766 2.2857 2.2951 2.3134 2.2128 2.2479 2.2226
sv,w 2.7512 3.1044 3.2314 2.7444 3.7692 3.1209 3.3177
sv 2.1549 2.0025 1.9764 1.9086 2.0151 2.1400 1.9502

Note: Bolded values indicate manual changes for robustness. All non-fixed parameters
are re-calibrated to those changes.

Table 3: Comparison of Simulation Moments to the Data
10% of Whites Not Infracting

Minority White
Day Night Day Night

Percentile Simulated Data Simulated Data Simulated Data Simulated Data

20 10.8665 11.9966 10.9793 12.1858 11.4538 11.1008 11.3374 10.7167
40 13.8992 14.6590 14.0329 15.1177 14.7386 14.8668 14.6336 14.5273
60 16.7758 17.1187 16.8954 17.6369 17.9037 18.2523 17.8081 17.9000
80 20.7347 20.4836 20.8470 20.8977 22.3612 22.5142 22.2756 22.0989
90 24.0900 23.6711 24.2139 23.9983 26.2626 26.4992 26.1923 25.7294
95 27.3353 27.0675 27.4117 26.9751 30.0364 30.3582 29.9703 29.4817
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Table 4: Simulation Percentile Moments
10% of Whites Not Infracting

Minority White
Percentile Day Night Difference Day Night Difference

20 10.8665 10.9793 -0.1128 11.4538 11.3374 0.1164
40 13.8992 14.0329 -0.1337 14.7386 14.6336 0.1050
60 16.7758 16.8954 -0.1195 17.9037 17.8081 0.0956
80 20.7347 20.8470 -0.1123 22.3612 22.2756 0.0856
90 24.0900 24.2139 -0.1239 26.2626 26.1923 0.0703
95 27.3353 27.4117 -0.0764 30.0364 29.9703 0.0661

MDay 0.1675

KERS 0.9524

0.5δDay 0.2307
0.5δNight 0.1744

Note: The calibrations are always within 0.05% of the target fraction of
whites not infracting. MDay is the fraction of minorities not infracting
during daylight. 0.5δ is the fraction of African-Americans in the simulation
population in daylight and darkness respectively.

Table 5: Simulation Day and Night Speed Differences
10% of Whites Not Infracting

Stopped Drivers All Drivers
Percentile Minority White Minority White

20 -0.1128 0.1164 -0.4696 0.2890
40 -0.1337 0.1050 -0.4490 0.2735
60 -0.1195 0.0956 -0.4024 0.2391
80 -0.1123 0.0856 -0.3461 0.1982
90 -0.1239 0.0703 -0.3052 0.1691
95 -0.0764 0.0661 -0.2714 0.1453
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Table 6: Simulation Day and Night Speed Differences

5% 2% 1%
Percentile Minority White Minority White Minority White

20 -0.2286 0.3496 -0.3116 0.4958 -0.3495 0.5567
40 -0.2290 0.3228 -0.2888 0.4526 -0.3306 0.5055
60 -0.2384 0.3062 -0.2811 0.4083 -0.3119 0.4680
80 -0.2104 0.2712 -0.2489 0.3577 -0.2801 0.4200
90 -0.1884 0.2199 -0.2131 0.3234 -0.2646 0.3784
95 -0.1421 0.2122 -0.2001 0.2816 -0.2378 0.3334

MDay 0.0994 0.0672 0.0400

KERS 0.9600 0.9788 0.9971

0.5δDay 0.2165 0.2000 0.1882
0.5δNight 0.1658 0.1548 0.1471

Note: The calibrations are always within 0.05% of the target fraction of
whites not infracting. MDay is the fraction of minorities not infracting
during daylight. 0.5δ is the fraction of African-Americans in the simulation
population daylight and darkness respectively.

Table 7: Robustness Simulation Percentile Moments
for 5% White not Infracting

a = 2.05 a = 2.25 η = 1.03 η = 1.09
Percentile Minority White Minority White Minority White Minority White

20 -0.3226 0.3298 -0.1064 0.1837 -0.1956 0.3245 -0.1831 0.1224
40 -0.3263 0.3257 -0.1125 0.1457 -0.2044 0.2974 -0.1373 0.1016
60 -0.3105 0.2780 -0.0525 0.0993 -0.2131 0.2724 -0.1056 0.0777
80 -0.2917 0.2648 -0.0741 0.0661 -0.1807 0.2354 -0.0526 0.0529
90 -0.2692 0.2110 -0.0101 -0.0171 -0.1494 0.1783 -0.0219 0.0202
95 -0.2325 0.2052 -0.0080 0.0201 -0.1333 0.1579 0.0287 -0.0153

MDay 0.0870 0.1020 0.1047 0.0912

KERS 0.9755 0.9692 0.9646 0.9665

0.5δDay 0.2169 0.1866 0.1946 0.1945
0.5δNight 0.1673 0.1431 0.1490 0.1489

Note: The calibrations are always within 0.05% of the target fraction of whites not infracting.
MDay is the fraction of minorities not infracting during daylight. 0.5δ is the fraction of African-Americans
in the simulation population daylight and darkness respectively.
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Table 10: Logistic Regression Estimates of Demography on Visibility in Traffic
Stops Made for Speeding within the Annual and DST Inter-twilight Sample

(1) (2) (3) (1) (2) (3)
Annual Sample 45 Day DST Sample

Daylight
0.350*** 0.439*** 0.483*** 0.369** 0.372** 0.348*
(0.0678) (0.0722) (0.0853) (0.170) (0.168) (0.194)

Day of Week X X X X X X
Time of Day X X X X X X
Daily Volume X X
DST Window X X
Troop FE X X

Note 1: A coefficient estimate concatenated with a * represents a p-value .1, ** represents a
p-value .05, and *** represents a p-value .01 level of significance.
Note 2: Standard errors are clustered at the barracks level.
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Figure 3: Kernel Density Estimates of the Absolute Speed Distribution by
Demography within the DST Inter-twilight Sample
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Note 1: The bandwidth of the kernel density estimates has been set to half a standard
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